\[\displaystyle \int_0^1 {x^{x^{x^{.^{.^.}}}} \ dx} = \sum_{k=0}^{\infty}{{(-1)}^k {(k+1)}^{k-1}}\]

**Proof:**

Since generalized exponential series -

\[\displaystyle \mathcal{E}_t(x) = \sum_{k = 0}^{\infty}{{(tk+1)}^{k-1} \frac{x^k}{k!}}\]

follow

\[\displaystyle \mathcal{E}_t(x) = \exp(x\mathcal{E}_t(x)^t)\]

Therefore, for \(t= 1\),

\[\displaystyle \mathcal{E}(x) = \exp(x\mathcal{E}(x))\]

\[\displaystyle \mathcal{E}(\ln(x)) = \exp(\mathcal{E}(\ln(x)) \ln(x)) = x^{\mathcal{E}(\ln(x))}\]

That's our tetration.

\[\displaystyle \mathcal{E}(\ln(x)) = x^{x^{x^{.^{.^.}}}}\]

Also,

\[\displaystyle \mathcal{E}(\ln(x)) = \sum_{k = 0}^{\infty}{{(k+1)}^{k-1} \frac{{\ln(x)}^k}{k!}}\]

\[\displaystyle \int_0^1{x^{x^{x^{.^{.^.}}}}\ dx} = \sum_{k = 0}^{\infty}{\frac{{(k+1)}^{k-1}}{k!} \int_0^1{{(\ln(x))}^k \ dx} } \]

Let's take this integral separately.

\[I = \int_0^1 {{(\ln(x)}^k\ dx}\]

Consider

\[I(n) = \int_0^1 {x^n \ dx} = \frac{1}{n+1}\]

\[I^{(k)}(0) = \int_0^1 {{(\ln(x)}^k\ dx} = {(-1)}^k k!\]

Therefore,

\[\displaystyle \int_0^1{x^{x^{x^{.^{.^.}}}}\ dx} = \sum_{k = 0}^{\infty}{\frac{{(k+1)}^{k-1}}{k!}{(-1)}^k k! } \]

\[\displaystyle \int_0^1 {x^{x^{x^{.^{.^.}}}} \ dx} = \sum_{k=0}^{\infty}{{(-1)}^k {(k+1)}^{k-1}}\]

/*

Now this "oscillating divergence" is really not what I liked. Is it correct, anyways?

I am not really freshman yet. Will be in a month or so.

*/

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

There are no comments in this discussion.