Write a full solution.

1.) Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ that satisfy the inequality for all $n \in \mathbb{N}$

$f(n+1) > f(f(n))$

2.) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function that satisfy the equation for all $m,n \in \mathbb{N}$

$f(m+f(n)) = n+f(m+58)$

Prove that there exists only 1 solution of functional equation above, and find the value of $f(1)+f(2)+\dots + f(15)$.

3.) Find all functions $f: \mathbb{R_{0}^{+}} \rightarrow \mathbb{R_{0}^{+}}$ such that for all $x,y \in \mathbb{R_{0}^{+}}$

$f(x+f(y^{2})) = f(x) + y^{2}$

Where $\mathbb{R_{0}^{+}}$ is set of non-negative real numbers.

4.) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x,y,z \in \mathbb{R}$

$f(x^{2}(z^{2}+1)+f(y)(z+1)) = 1 - f(z)(x^{2}+f(y)) - z((1+z)x^{2}+2f(y))$

5.) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function that satisfy the equation for all $x,y \in \mathbb{R}$

$f^{3}(x+y)+f^{3}(x-y) = (f(x)+f(y))^{3}+(f(x)-f(y))^{3}$

Prove that $f(x+y) = f(x)+f(y)$ for all $x,y \in \mathbb{R}$.

This note is a part of Thailand Math POSN 2nd round 2015

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

$</code> ... <code>$</code>...<code>."> Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in $</span> ... <span>$ or $</span> ... <span>$ to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestSamuraiwarm Tsunayoshi, I wanted to ask that for Q-5, can we use a particular $f(x)$ that satisfies the given condition to prove the required statement?

If so, then one can note that the class of functions $f:\Bbb{R}\mapsto\Bbb{R}$ defined by $f(x)=\lambda x~,~\lambda$ is some constant satisfies the given condition. Then, the proof becomes trivial since,

$f(x+y)=\lambda (x+y)=\lambda x + \lambda y = f(x)+f(y)$

Log in to reply

Nope, you have to prove that no other functions exist.

Log in to reply