Find all such functions \(f: \mathbb{ R }^{ + }\rightarrow \mathbb{ R }^{ + }\) such that

\[\large{f\left( x+f\left( y \right) \right) =f\left( x+y \right) +f\left( y \right) }\]

for all \(x,y \in \mathbb R^{+}\).

Find all such functions \(f: \mathbb{ R }^{ + }\rightarrow \mathbb{ R }^{ + }\) such that

\[\large{f\left( x+f\left( y \right) \right) =f\left( x+y \right) +f\left( y \right) }\]

for all \(x,y \in \mathbb R^{+}\).

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestLet \(f \in \mathcal{F}(\mathbb{R}^+,\mathbb{R}^+) \) such that \( \forall x,y \in \mathbb{R}^+, f(x+f(y))=f(x+y)+f(y) \).

Let \(x \in \mathbb{R}^+ \). We have that

\(f(x+f(x))=f(2x)+f(x) \) (1.)

And we also have that \((f(x+f(x))=f(2x)+f(x)) \land (f(\frac{x}{2}+f(\frac{x}{2}))=f(x)+f(\frac{x}{2}) ) \implies (f(x+f(x))-f(\frac{x}{2}+f(\frac{x}{2}))=f(x)-f(\frac{x}{2}) ) \)

So, \( \forall x \in \mathbb{R}^+, f(2x+f(2x))-f(x+f(x))=f(2x)-f(x) \)

Let \(x \in \mathbb{R}^+ \). We have, by (1.), that

\( f(2x+f(2x))-f(x+f(x))=f(x+f(x))-2f(x) \implies f(2x+f(2x))=2(f(x+f(x))-f(x)) \implies f(2x+f(2x))=2f(2x) \)

So, \( \forall x \in \mathbb{R}^+, f(x+f(x))=2f(x)\). Let \(x \in \mathbb{R}^+ \). In these conditions we have that

\( f(x+f(x))=2f(x)) \implies f(2x)+f(x)=2f(x) \implies f(2x)=f(x) \) (2.)

It is easy to verify that (2.) implies that \( \exists c \in \mathbb{R}: f=c \) and it is also easy to verify that \(f=0 \) is the particular solution. – Paulo Guilherme Santos · 1 year, 10 months ago

Log in to reply

@Sharky Kesa , @Nihar Mahajan ,@Satyajit Mohanty ,@Sandeep Bhardwaj ,@Otto Bretscher please share this and invite other people to solve this question. – Lakshya Sinha · 1 year, 10 months ago

Log in to reply

@Chew-Seong Cheong , @Calvin Lin , – Lakshya Sinha · 1 year, 10 months ago

Log in to reply