Gamma-Zeta Product

Start with the substitution \(s = nu\). Show that \[\Gamma(x)\zeta(x) = \int _{ 0 }^{ \infty }{ { e }^{ -s } } { s }^{ x-1 }ds\left( \sum _{ n=1 }^{ \infty }{ { n }^{ -x } } \right) \] is equivalent to the integral \[\Gamma(x)\zeta(x) = \int _{ 0 }^{ \infty }{ \frac { { u }^{ x-1 } }{ { e }^{ u }-1 } du } .\]

Solution

Since the gamma function is a real number, we may treat the product as \[\Gamma(x)\zeta(x) = \sum _{ n=1 }^{ \infty }{ \int _{ 0 }^{ \infty }{ { e }^{ -s } } {\left( \frac{s}{n} \right)}^{ x-1 }\frac{1}{n}ds } . \]

We let \(s = nu\) and \(ds=ndu\), thus

\[ \begin{align*} \Gamma(x)\zeta(x) &= \sum _{ n=1 }^{ \infty }{ \int _{ 0 }^{ \infty }{ { e }^{ -nu } } {u}^{ x-1 }du } \\ &= \int _{ 0 }^{ \infty }{ ({ e }^{ -u} +{ e }^{ -2u} +{ e }^{ -3u} +... ) } {u}^{ x-1 }du \\ &=\int _{ 0 }^{ \infty }{ { u }^{ x-1 }{ e }^{ -u } } \left( \frac { { e }^{ u } }{ { e }^{ u }-1 } \right) du \\ &=\int _{ 0 }^{ \infty }{ \frac { { u }^{ x-1 } }{ { e }^{ u }-1 } } du. \end{align*}\]

Check out my other notes at Proof, Disproof, and Derivation

Note by Steven Zheng
4 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...