\[ \large \displaystyle\lim _{ x\rightarrow \infty }{ \sum _{ n=1 }^{ x }{ \left( \Gamma \left(\dfrac { n }{ x } \right) \right) ^{ -n } } } =\dfrac { { e }^{ \gamma } }{ { e }^{ \gamma }-1 } \]

Prove that the equation above holds true.

**Note**: This is an open problem. Numerical computations show this to be its value. If you come up with a solution, I recommend publishing it and congrats if you do!

**Notations**:

\( \Gamma(\cdot) \) denotes the Gamma function.

\( \gamma\) denotes the Euler-Mascheroni constant, \(\gamma \approx 0.5772 \).

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestany references ? thanks

Log in to reply

References, please!

Log in to reply