\[ \large \displaystyle\lim _{ x\rightarrow \infty }{ \sum _{ n=1 }^{ x }{ \left( \Gamma \left(\dfrac { n }{ x } \right) \right) ^{ -n } } } =\dfrac { { e }^{ \gamma } }{ { e }^{ \gamma }-1 } \]

Prove that the equation above holds true.

**Note**: This is an open problem. Numerical computations show this to be its value. If you come up with a solution, I recommend publishing it and congrats if you do!

**Notations**:

\( \Gamma(\cdot) \) denotes the Gamma function.

\( \gamma\) denotes the Euler-Mascheroni constant, \(\gamma \approx 0.5772 \).

## Comments

Sort by:

TopNewestany references ? thanks – Andrew Hucek · 1 week, 1 day ago

Log in to reply

References, please! – Atomsky Jahid · 2 weeks, 5 days ago

Log in to reply