Let \(a = \max(m, n)\) and \(b = \min(m, n)\). Let \(T_n\) denote the \(n^{\text{th}}\) triangular number.

If \(b \geq \frac{a}{2}\), then number of triangles is equal to \(2 T_a + 2 T_b + 4 b\).
If \(b < \frac{a}{2}\), then number of triangles is equal to \(2 ( T_a - T_{a - 2b}) + 2 T_b + 4b\).

For n>m..and m>=ceiling function(n/2+0.5)..Generalization will be (n)(n+1)+(m)(m+5)..
For n>m.. and m<ceiling function(n/2+0.5)..and for n=odd.. (n)(n+1)+(m)(m+5)-Sum(k)..Where k=(ceiling function(n/2+0.5)-m)/0.5...And for n=Even.. k=((ceiling function(n/2+0.5)-m)/0.5-1)

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestLet \(a = \max(m, n)\) and \(b = \min(m, n)\). Let \(T_n\) denote the \(n^{\text{th}}\) triangular number.

If \(b \geq \frac{a}{2}\), then number of triangles is equal to \(2 T_a + 2 T_b + 4 b\).

If \(b < \frac{a}{2}\), then number of triangles is equal to \(2 ( T_a - T_{a - 2b}) + 2 T_b + 4b\).

Log in to reply

For n>m..and m>=ceiling function(n/2+0.5)..Generalization will be (n)

(n+1)+(m)(m+5).. For n>m.. and m<ceiling function(n/2+0.5)..and for n=odd.. (n)(n+1)+(m)(m+5)-Sum(k)..Where k=(ceiling function(n/2+0.5)-m)/0.5...And for n=Even.. k=((ceiling function(n/2+0.5)-m)/0.5-1)Log in to reply