Waste less time on Facebook — follow Brilliant.
×

Generating problems about rational expressions

The other day, I was solving problems regarding rational expressions. I noticed that every single time, after simplifying the numerator, the fraction is already in lowest terms. So I wondered if this is always true.

After a bit of experimentation, I was able to construct this counterexample:

\[ \frac{x+4}{(x+1)(x+2)} - \frac{x}{(x+2)(x+3)} \]

\[= \frac{(x+4)(x+3)-x(x+1)}{(x+1)(x+2)(x+3)}\]

\[= \frac{x^2+7x+12-x^2-x}{(x+1)(x+2)(x+3)}\]

\[= \frac{6x+12}{(x+1)(x+2)(x+3)}\]

\[= \frac{6(x+2)}{(x+1)(x+2)(x+3)}\]

\[= \frac{6}{(x+1)(x+3)}\].

Can you think of a way to generate infinitely-many such problems?

Here are some assumptions:

  1. All the coefficients are integers.

  2. The addends are already in lowest terms.

  3. After simplifying the numerator, the numerator and the denominator stilll has a common factor.

Note by Mark Lao
3 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Hey Mark, I am wondering what you mean by "such problems" here. Do you mean to find pairs of fractions that when added/subtracted, result in a numerator that has a common factor with the denominator? Also, the starting fractions must be linear functions of \(x\) in the numerator? Please write back.

Josh Silverman Staff - 3 years, 5 months ago

Log in to reply

Do you mean to find pairs of fractions that when added/subtracted, result in a numerator that has a common factor with the denominator? - Yes.

Also, the starting fractions must be linear functions of \( x \) in the numerator? - Not necessarily. :-)

Mark Lao - 3 years, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...