Look at the figure. it is given a scalene triangle ABC. A square are drawn in each of its sides. If points P, Q and R are the centers of the square. Prove that:
1. RP perpendicular to AQ and
2. RP = AQ.

I was expecting proofs along the lines of complex numbers of vectors, which would be considered a standard exercise. There's a more basic approach, which uses similar ideas.

Hint: Let the square be labelled \(ABDE\). Consider triangles \( ABQ\) and \( EBC\). Consider triangles \( ARC\) and \(AEC\). Hence, we get fact 2. Show further that \( EC\) makes a \(45^\circ\) angle with both \(AQ\) and \(RP\), which gives fact 1.

Thank u mr calvin for your hint. Just want to give a correction. Is it true that we should consider ARC and AEC, i think we should consider triangle ARP and AEC. Thank u. It was helping me a lot.

Here's a proof if you're familiar with complex numbers:

Let the complex numbers \(a,b,c \) stand for the points on the triangle. Then \( \large p=c+\frac{\sqrt{2}}{2}(a-c)e^{i\frac{-\pi}{4}}=c+\frac{\sqrt{2}}{2}(a-c)(\frac{1}{\sqrt{2}}(1-i))=c+\frac{1}{2}(a-c)(1-i) \)

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestI was expecting proofs along the lines of complex numbers of vectors, which would be considered a standard exercise. There's a more basic approach, which uses similar ideas.

Hint:Let the square be labelled \(ABDE\). Consider triangles \( ABQ\) and \( EBC\). Consider triangles \( ARC\) and \(AEC\). Hence, we get fact 2. Show further that \( EC\) makes a \(45^\circ\) angle with both \(AQ\) and \(RP\), which gives fact 1.Log in to reply

Thank u mr calvin for your hint. Just want to give a correction. Is it true that we should consider ARC and AEC, i think we should consider triangle ARP and AEC. Thank u. It was helping me a lot.

Log in to reply

Here's a proof if you're familiar with complex numbers:

Let the complex numbers \(a,b,c \) stand for the points on the triangle. Then \( \large p=c+\frac{\sqrt{2}}{2}(a-c)e^{i\frac{-\pi}{4}}=c+\frac{\sqrt{2}}{2}(a-c)(\frac{1}{\sqrt{2}}(1-i))=c+\frac{1}{2}(a-c)(1-i) \)

\( \large p=\frac{1}{2}c(1+i)+\frac{1}{2}a(1-i) \)

By analogy,

\( \large q=\frac{1}{2}b(1+i)+\frac{1}{2}c(1-i) \)

\( \large r=\frac{1}{2}a(1+i)+\frac{1}{2}b(1-i) \)

Giving,

\( \large a-q= a-\frac{1}{2}b(1+i)-\frac{1}{2}c(1-i)\)

\( \large p-r= \frac{1}{2}c(1+i)+\frac{1}{2}a(1-i)-\frac{1}{2}a(1+i)-\frac{1}{2}b(1-i)\)

\( \large = \frac{1}{2}c(1+i)-ia-\frac{1}{2}b(1-i)\)

\( \large =-ia+\frac{1}{2}b(i-1)+ \frac{1}{2}c(1+i)\)

\( \large =-ia+\frac{1}{2}b(i-1)+ \frac{1}{2}c(i+1)\)

\( \large =-i(a-\frac{1}{2}b(1+i)- \frac{1}{2}c(1-i))\)

\( \large =e^{-i\frac{\pi}{2}}(a-q)\)

QED

Log in to reply

thank u...

Log in to reply