The problem: Let A be an outside point from the circle with the center O. Draw the secant ABC of the mentioned circle. The tangents at B and C got an intersection, named K. From K, we draw the perpendicular to AO. Name the intersection H. E and F are 2 intersections of KH and the circle with the center O. (E is between K and F). We name M for the intersection of KO and BC. Prove that:
Notes:
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Sort by:
Top NewestThis problem can be solved by the similarity relationships in a right triangle with the altitude of the hypotenuse. Here's a sketch of my solution: 1. By the power of a point theorem(or whatever you want to call it, it's basically simiarity), we get that KExKF=KB^2. Moreover, since ∠KBO=90° and BM⊥KO, we get KMxKO=KB^2=KExKF→O,M,E,F are concyclic. 2. We know that AE is tangent to circle O iff ∠OEA=90°. Since ∠KMA=∠KHA=90°, so K,M,H,A are concyclic. Thus OHxOA=OMxMK=OB^2=OE^2→By SAS similarity △EOH is similar to △AOE→∠OEA=∠EHO=90° and that proves AE is tangent to circle O. By analogy AF is also tangent to circle O.
Log in to reply
sorry for not following the formatting guidline :(
Log in to reply
Thanks a lot! I can understand the solution that you gave me. But I cannot figure it out :D
Log in to reply