Golden Ratio is considered to be one of the greatest beauties in mathematics. Two numbers \(a\) and \(b\) are said to be in Golden Ratio if \[a>b>0,\quad and\quad \frac { a }{ b } =\frac { a+b }{ a } \] If we consider this ratio to be equal to some \(\varphi \) then we have \[\varphi =\frac { a }{ b } =\frac { a+b }{ a } =1+\frac { b }{ a } =1+\frac { 1 }{ \varphi } \] Solving in quadratic we get two values of \(\varphi \), viz. \(\frac { 1+\sqrt { 5 } }{ 2 } \) and \(\frac { 1-\sqrt { 5 } }{ 2 } \) one of which (the second one) turns out to be negative (extraneous) which we eliminate. So the first one is taken to be the golden ratio (which is obviously a constant value). It is considered that objects with their features in golden ratio are aesthetically more pleasant. A woman's face is in general more beautiful than a man's face since different features of a woman's face are nearly in the golden ratio.

Now let us come to Fibonacci sequence. The Fibonacci sequence \({ \left( { F }_{ n } \right) }_{ n\ge 1 }\) is a natural sequence of the following form:\[{ F }_{ 1 }=1,\quad { F }_{ 2 }=1,\quad { F }_{ n-1 }+{ F }_{ n }={ F }_{ n+1 }\] The sequence written in form of a list, is \(1,1,2,3,5,8,13,21,34,..\).

The two concepts: The Golden Ratio and The Fibonacci Sequence, which seem to have completely different origins, have an interesting relationship, which was first observed by Kepler. He observed that the golden ratio is the limit of the ratios of successive terms of the Fibonacci sequence or any Fibonacci-like sequence (by Fibonacci-like sequence, I mean sequences with the recursion relation same as that of the Fibonacci Sequence, but the seed values different). In terms of limit:\[\underset { n\rightarrow \infty }{ lim } \left( \frac { { F }_{ n+1 } }{ { F }_{ n } } \right) =\varphi \] We shall now prove this fact. Let \[{ R }_{ n }=\frac { { F }_{ n+1 } }{ { F }_{ n } } ,\forall n\in N\]Then we have \(\forall n\in N\) and \(n\ge 2\), \[{ F }_{ n+1 }={ F }_{ n }+{ F }_{ n-1 }\\ \] and \[{ R }_{ n }=1+\frac { 1 }{ { R }_{ n-1 } } >1\]We shall show that this ratio sequence goes to the Golden Ratio \(\varphi \) given by: \[\varphi =1+\frac { 1 }{ \varphi } \]We see that: \[\left| { R }_{ n }-\varphi \right| =\left| \left( 1+\frac { 1 }{ { R }_{ n-1 } } \right) -\left( 1+\frac { 1 }{ \varphi } \right) \right| \\ =\left| \frac { 1 }{ { R }_{ n-1 } } -\frac { 1 }{ \varphi } \right| \\ =\left| \frac { \varphi -{ R }_{ n-1 } }{ \varphi { R }_{ n-1 } } \right| \\ \le \left( \frac { 1 }{ \varphi } \right) \left| \varphi -{ R }_{ n-1 } \right|\\ \le { \left( \frac { 1 }{ \varphi } \right) }^{ n-2 }\left| { R }_{ 2 }-\varphi \right| \] Which clearly shows that\[\left( { R }_{ n } \right) \longrightarrow \varphi \] (since \(\left| { R }_{ 2 }-\varphi \right| \) is a finite positive real whose value depends on the seed values)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestWow,very helpful!Thank you!

Log in to reply

You are welcome! Did you like it?

Log in to reply

Yes!

Log in to reply

Log in to reply

Nice work ! I read this in the book Da Vinci Code by Dan Brown.

Log in to reply

That is one book that I want to read but haven't read yet..thank you for your compliments..:-)

Log in to reply

Have you read any other book by Dan Brown ? If not then try them ,they are awesome .

Log in to reply

Log in to reply

Nice

Log in to reply

Thanks..don't you think whatever is written above is a reconciliation of two apparently different mathematical ideas?..

Log in to reply

There is one more interesting thing I found yesterday. The Ratio of the diagonal and the side of a regular Pentagon is exactly equal to the golden ratio.

Log in to reply

Ok then I will write a note on it..

Log in to reply

Didn't you find it extremely interesting? This is the beauty of Mathematics.

Log in to reply

https://brilliant.org/problems/wow-12/?group=w3HWB8GobVLl&ref_id=1095702

i posted a problem about the same thing

my solution was almost the same as your proof of it (:

Log in to reply

I have seen your proof. Your idea is essentially the same. Only some of your steps are erroneous.

Log in to reply

why?can you elaborate please?

Log in to reply

Log in to reply

Very nice knowledge.. Loved it...The Magic of Maths!!!

Log in to reply

I like Fibonacci very much.It is really The beauty of Mathematics.

Log in to reply