Waste less time on Facebook — follow Brilliant.
×

Golden ratio is everywhere!

\[ \large \sum_{n=1}^\infty \dfrac{(-1)^{n-1}} {n^2 \; \dbinom{2n}{n}} = 2 ( \ln \phi)^2 \]

Prove the equation above.

Notations:


This is a part of the set Formidable Series and Integrals.

Note by Hummus A
1 year, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\[\sum_{n=1}^\infty \dfrac{(-1)^{n-1}} {n^2 \binom{2n}{n}} =\sum_{n=1}^\infty \dfrac{(-1)^{n-1}(n-1)!n!} {n*2n!} \\ =\sum_{n=1}^\infty \dfrac{(-1)^{n-1}B(n+1,n)} {n}=\int_0^1 \sum_{n=1}^\infty \dfrac{(-1)^{n-1}x^n(1-x)^{n-1}}{n}dx \\=\int_0^1 \dfrac{\ln(1+x-x^2)}{1-x}dx=\int_0^1 \dfrac{\ln(1+x-x^2)}{x}dx\] The integral is this

Try a similar problem

Aareyan Manzoor - 1 year, 8 months ago

Log in to reply

I know not. But it is so interesting!

Joel Yip - 1 year, 8 months ago

Log in to reply

i wanted to share the beauty with the brilliant community :)

Hummus A - 1 year, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...