Definition..a group G is a mathematical object .

Defined as a non empty set G with a binary operation (*) and satisfy below 4 properties

```
1) closure
a*b=c , a,b,c €G
2) associativity a+(b+c)=(a+b)+c
3)G have identity element e which is unique
such that
a*e=e*a=a
4) have inverse of each element such that
a*b=e for all a,b €G
```

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestClosure property is that ab\(\in\) G whenever a,b\(\in\)G and associativity is a

(bc)=(ab)c whenever a,b,c\(\in\)GLog in to reply