hard maths questions please answer:

in the cartesian plan :

Note by Abdou Ali
4 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I presume that \(x\) refers to the angle between the two intersecting lines.

Firstly, notice that for every two intersecting lines in a Cartesian plane, there will be one line which makes a larger angle with the positive x-axis.

We shall call the gradient of this line as \(m_1\). Similarly, we shall call the gradient of the line which makes a smaller angle with the positive x-axis as \(m_2\)

The relation between the angle and the gradient is given by

\[m_1 = \tan \theta_1\]

\[m_2 = \tan \theta_2\]

where \(\theta_1>\theta_2\)

Notice that \(x=\theta_1-\theta_2\)

So, taking tangents on both sides,

\[\tan x=\tan(\theta_1-\theta_2)\]

By the addition formula for tangent,

\[\tan x=\frac{\tan\theta_1-\tan\theta_2}{1+\tan\theta_1\tan\theta_2}\]

which is equivalent to

\[\tan x=\frac{m_1-m_2}{1+m_1m_2}\]

Ho Wei Haw - 4 years, 9 months ago

Log in to reply

i did not understand the Penultimate equation

Abdou Ali - 4 years, 9 months ago

Log in to reply

It is the different of angles formula for tan. For example, \(\tan(a-b)=\dfrac{\tan a - \tan b}{1+\tan a \tan b}\).

Daniel Liu - 4 years, 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...