×

# help

lim x->0 (cos(sinx)-cos(x))/x^4

Note by Selena Miller
3 years, 6 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

For small $$x$$, $$\large \sin (x) \approx x - \frac {x^3}{6}$$, and $$\large \cos (x) \approx 1 - \frac {x^2}{2}$$

$\begin{eqnarray} \LARGE \lim_{x \to 0} \frac { \cos (\sin x ) - \cos (x) } {x^4} & = & \lim_{x \to 0} \frac { \cos \left ( x - \frac {x^3}{6} \right ) - \cos (x) } {x^4} \\ \LARGE & = & \lim_{x \to 0} \frac { 1 - \frac { \left ( x - \frac {x^3}{6} \right )^2 }{2} - \left (1 - \frac {x^2}{2} \right ) }{x^4} \\ \LARGE & = & \lim_{x \to 0} \frac {x^2 - \left ( x - \frac {x^3}{6} \right )^2 }{2x^4} = \boxed{ \frac {1}{6} } \\ \end{eqnarray}$

Alternatively, recall that sum/difference to product identity $$\cos (A) - \cos (B) = -2 \sin \left ( \frac {A+B}{2} \right ) \sin \left ( \frac {A-B}{2} \right )$$

And this time, for small $$x$$, $$\sin (x) \approx x$$, apply L'hopital Rule

Let $$A = \sin (x), B = x$$, we have

$\begin{eqnarray} \LARGE \lim_{x \to 0} \frac { \cos (\sin x ) - \cos (x) } {x^4} & = & \lim_{x \to 0} \frac {-2 \sin \left ( \frac {\sin (x) + x}{2} \right ) \sin \left ( \frac {\sin (x) - x}{2} \right ) }{x^4} \\ \LARGE & = & \lim_{x \to 0} \frac {-2 \left ( \frac {\sin (x) + x}{2} \right ) \left ( \frac {\sin (x) - x}{2} \right ) }{x^4} \\ \LARGE & = & \lim_{x \to 0} \frac {\sin^2 (x) - x^2 }{-2x^4} \\ \LARGE & = & \lim_{x \to 0} \frac {x^2 - \sin^2 (x) }{2x^4} \space \text{, Apply L'hopital Rule } \\ \LARGE & = & \lim_{x \to 0} \frac {2x - 2 \sin (x) \cos(x) }{8x^3} \\ \LARGE & = & \lim_{x \to 0} \frac {2x - \sin (2x) }{8x^3} \space \text{, Apply L'hopital Rule again } \\ \LARGE & = & \lim_{x \to 0} \frac {2 - 2\cos (2x) }{24x^2} \space \text{, Apply L'hopital Rule again } \\ \LARGE & = & \lim_{x \to 0} \frac {4\sin (2x) }{24(2x)} = \boxed{ \frac {1}{6} } \\ \end{eqnarray}$

- 3 years, 6 months ago

want an easier method please And expansion didn't work

- 3 years, 6 months ago

try the series expansion for sinx and cosx or u may also differentiate the numerator and denominator at least four times( l' Hospital's rule) to arrive at an answer .. !

- 3 years, 6 months ago