Here's a problem i am not being able to solve:

\(prove\) \(that\)

\[\large{lim_{x\to \frac{\pi}{2}}}\LARGE{(1^{\frac{1}{cos^{2}x}}+2^{\frac{1}{cos^{2}x}}+...........+n^{\frac{1}{cos^{2}x}})^{cos^{2}x}=n}\]

Please help

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestTo prove :

Let\(y=\frac{1}{cos^2x}\) . As \(x\to \frac{\pi}{2}, y\to \infty\).Therefore , \[limit=\displaystyle Lim_{y\to \infty} (1^y+2^y+3^y+....+n^y)^{\frac{1}{y}} \quad \quad \quad \infty^0 \ form \] \[\quad \quad \quad = (n^y)^{\frac{1}{y}} \left[ \left(\frac{1}{n} \right)^y+ \left(\frac{2}{n} \right)^y+ \left(\frac{3}{n} \right)^y+......+ \left(\frac{n-1}{n} \right)^y+1 \right]^{\frac{1}{y}}\] \[ \quad \quad \quad = n.\left[ \left(\frac{1}{n} \right)^y+ \left(\frac{2}{n} \right)^y+ \left(\frac{3}{n} \right)^y+......+ \left(\frac{n-1}{n} \right)^y+1 \right]^{\frac{1}{y}}\] \[\quad \quad \quad =n . (1)^0 =\boxed{n}\]

Enjoy @Aritra Jana !

Log in to reply

ohhh.. silly me! i forgot to consider that each of \(\frac{i}{n}\) for \(i≤n-1\) is less than \(1\)!!

making \(\lim_{y\to\infty}(\frac{i}{n})^{y}=0\)

anyways. thanks a lot for replying :D

Log in to reply

@Sandeep Bhardwaj @Sanjeet Raria @Parth Lohomi @Calvin Lin @Mursalin Habib @megh choksi @Michael Mendrin @Satvik Golechha @Ronak Agarwal @Sean Ty @Chew-Seong Cheong @Alan Enrique Ontiveros Salazar @Joel Tan .

help? please?

Log in to reply