Waste less time on Facebook — follow Brilliant.
×

Help me !

My math teacher gave me a lot of problems to solve. But I don't have to worry because these problems aren't so difficult to solve. But one thing made me worried. That's why I need a little help. Tell me how can I prove that the product of any two consecutive even numbers is divisible by 8.

Please......help me! Quick!

Note by Raiyun Razeen
3 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

It's quite simple to think. Choose any two consecutive even no and u wil see only one of them is divisible by 4 but other is not. Now u r dividing the product of this two by 8 witch can be written as 4*2. Now look at the nos u have chosen before , one of them will be divisible by 4 and other will be divisible by 2.. nw u r done.. the product of ur chosen no are divisible by 8.

Sayan Kumar - 3 years, 8 months ago

Log in to reply

I'll help you (Please follow me in return!)

See, every consecutive pair of even numbers can be expressed as 2x and 2x+2 or 2(x+1). Their product will be 2 * 2 * x * (x+1)=4x(x+1). Now, if x is even, then 4x(x+1) will be divisible by 8. And if x is odd, then (x+1) will be even. So 'the product of any two consecutive even numbers is divisible by 8'. Please follow me for excellent problems on number theory and algebra.

Satvik Golechha - 3 years, 8 months ago

Log in to reply

First you follow me, then I will follow you.

Raiyun Razeen - 3 years, 8 months ago

Log in to reply

let one of them is \(2n\) . then other one is \(2n+2\). now \(\left( 2n+2 \right) *2n=4*(n+1)*n\)

now \(n\) and \(n+1\) are two consecutive number. therefore one of the is even and other one is odd therefore \(n*(n+1)\) must be divisible by 2

therefor \(n*\left( n+1 \right) =2*k\) where \(k\) is an integer

therefore \(\left( 2n+2 \right) *2n=4*2*k\)

Bedadipta Bain - 3 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...