My math teacher gave me a lot of problems to solve. But I don't have to worry because these problems aren't so difficult to solve. But one thing made me worried. That's why I need a little help. Tell me how can I prove that the product of any two consecutive even numbers is divisible by 8.

Please......help me! Quick!

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestIt's quite simple to think. Choose any two consecutive even no and u wil see only one of them is divisible by 4 but other is not. Now u r dividing the product of this two by 8 witch can be written as 4*2. Now look at the nos u have chosen before , one of them will be divisible by 4 and other will be divisible by 2.. nw u r done.. the product of ur chosen no are divisible by 8.

Log in to reply

I'll help you (Please follow me in return!)

See, every consecutive pair of even numbers can be expressed as 2x and 2x+2 or 2(x+1). Their product will be 2 * 2 * x * (x+1)=4x(x+1). Now, if x is even, then 4x(x+1) will be divisible by 8. And if x is odd, then (x+1) will be even. So 'the product of any two consecutive even numbers is divisible by 8'. Please follow me for excellent problems on number theory and algebra.

Log in to reply

First you follow me, then I will follow you.

Log in to reply

let one of them is \(2n\) . then other one is \(2n+2\). now \(\left( 2n+2 \right) *2n=4*(n+1)*n\)

now \(n\) and \(n+1\) are two consecutive number. therefore one of the is even and other one is odd therefore \(n*(n+1)\) must be divisible by 2

therefor \(n*\left( n+1 \right) =2*k\) where \(k\) is an integer

therefore \(\left( 2n+2 \right) *2n=4*2*k\)

Log in to reply