Waste less time on Facebook — follow Brilliant.
×

HELP NEEDED !!

Can anyone please help me in solving this \[\displaystyle{\sum _{ i=0 }^{ 20 }{ \sum _{ j=i+1 }^{ 20 }{ { { \left( \begin{matrix} 20 \\ i \end{matrix} \right) } } } } \left( \begin{matrix} 20 \\ j \end{matrix} \right) }\]

Its answer is \[\frac { { 2 }^{ 40 }-\left( \begin{matrix} 40 \\ 20 \end{matrix} \right) }{ 2 } \]

Note by Vighnesh Raut
2 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\[\displaystyle{\sum _{ i=0 }^{ 20 }{ \sum _{ j=i+1 }^{ 20 }{ { { \left( \begin{matrix} 20 \\ i \end{matrix} \right) } } } } \left( \begin{matrix} 20 \\ j \end{matrix} \right) }\] \[= \displaystyle \sum_{i=0}^{20} \binom{20}{i} \times \left[ \binom{20}{i+1}+\binom{20}{i+2}+.....+\binom{20}{20}\right]\] \[=\text{ Sum of the product of every possible combinations of two out of} \binom{20}{0} , \binom{20}{1}, ...., \binom{20}{20}=\lambda (say)\]

\[\left[ \binom{20}{0} +\binom{20}{1}+ ....+ \binom{20}{20}\right]^2= \binom{20}{0}^2+ \binom{20}{1}^2+ ....+ \binom{20}{20}^2 +2 \lambda\]

\[2^{40}=\binom{40}{20}+2\lambda\]

\[\implies \lambda=\dfrac{2^{40}-\binom{40}{20}}{2}\]

Note :

\[\displaystyle \sum_{k=0}^n \binom{n}{k}^2=\binom{2n}{n}\]

@Vighnesh Raut

Sandeep Bhardwaj - 2 years, 8 months ago

Log in to reply

Thanks Sir for the detailed solution.

Harshvardhan Mehta - 2 years, 8 months ago

Log in to reply

Thank you so much sir.... It is a very detailed solution...Understood the process..Once again thanks..

Vighnesh Raut - 2 years, 8 months ago

Log in to reply

From where did you get this question?

Adarsh Kumar - 2 years, 8 months ago

Log in to reply

It came in my mock mains test..

Vighnesh Raut - 2 years, 8 months ago

Log in to reply

Ok,which coaching centre?

Adarsh Kumar - 2 years, 8 months ago

Log in to reply

@Adarsh Kumar Career Launcher..

Vighnesh Raut - 2 years, 8 months ago

Log in to reply

@Vighnesh Raut ok thanx!

Adarsh Kumar - 2 years, 8 months ago

Log in to reply

@Adarsh Kumar where have you joined??

Vighnesh Raut - 2 years, 8 months ago

Log in to reply

@Vighnesh Raut I am 14 right now(going to be 15 on may 12),I don't go to any coaching centre.Sorry.

Adarsh Kumar - 2 years, 8 months ago

Log in to reply

@Adarsh Kumar oh ok....

Vighnesh Raut - 2 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...