Hello Brilliantians

I have a few doubts in Maths which are listed below.... for which i didn't receive satisfactory answers from my teachers..

I request the readers help me in the concepts.

Thanks in advance for your valuable contribution.

MATHS.

\(\large a_{ n }=\dfrac { { 2 }^{ 3 }-1 }{ { 2 }^{ 3 }+1 } .\dfrac { { 3 }^{ 3 }-1 }{ 3^{ 3 }+1 } .\dfrac { 4^{ 3 }-1 }{ 4^{ 3 }+1 } \ldots \dfrac { n^{ 3 }-1 }{ n^{ 3 }+1 }\quad \)Find \(\large \displaystyle \lim_{n\to \infty} 3a_{ n }\)

\(\large \displaystyle \lim_{x \rightarrow 3^+}\dfrac { \left[ { x }^{ 2 } \right] -2\left[ x \right] -3 }{ \left[ { x }^{ 2 } \right] -4\left[ x \right] +3 } \)

For a constant a, let the roots of \(f(x)\) of the equation \({ x }^{ 2 }+2(a-3)x+9=0\) lie between \((-6,1)\).

\(2, { h }_{ 1 },{ h }_{ 2 },{ h }_{ 3 } , \ldots , { h }_{ 20 },\left[ a \right] \) are in HP.

\(2, { a }_{ 1 },{ a }_{ 2 },{ a }_{ 3 } , \ldots , {a}_{ 20 }, \left[ a \right] \) are in AP.

Find the value of \({ a }_{ 3 }.{ h }_{ 18 }\)Is it AP, GP, HP ?

\(\quad \quad \displaystyle \sum_{ k=1 }^{ 2 }{ { cos }^{ 8 }\left( \dfrac { k\Pi }{ 5 } \right) , } \sum _{ k=1 }^{ 3 }{ { cos }^{ 8 }\left( \dfrac { k\Pi }{ 7 } \right) , } \sum _{ k=1 }^{ 4 }{ { cos }^{ 8 }\left( \dfrac { k\Pi }{ 9 } \right) , } \sum _{ k=1 }^{ 5 }{ { cos }^{ 8 }\left( \dfrac { k\Pi }{ 11 } \right) , \ldots}\)

Thanks a lot

## Comments

Sort by:

TopNewestA few observations to help you with 1.) .....

Note first that \(\dfrac{k^{3} - 1}{k^{3} + 1} = \dfrac{(k - 1)(k^{2} + k + 1)}{(k + 1)(k^{2} - k + 1)}.\)

Next look at the sub-product of three consecutive terms in \(a_{n}\):

\(\dfrac{(k - 1)(k^{2} + k + 1)}{(k + 1)(k^{2} - k + 1)} * \dfrac{((k + 1) - 1)((k + 1)^{2} + (k + 1) + 1)}{((k + 1) + 1)((k + 1)^{2} - (k + 1) + 1)} * \dfrac{((k + 2) - 1)((k + 2)^{2} + (k + 2) + 1)}{((k + 2) + 1)((k + 2)^{2} - (k + 2) + 1)} =\)

\(\dfrac{(k - 1)(k^{2} + k + 1)}{(k + 1)(k^{2} - k + 1)}*\dfrac{k(k^{2} + 3k + 3)}{(k + 2)(k^{2} + k + 1)} * \dfrac{(k + 1)(k^{2} + 5k + 7)}{(k + 3)(k^{2} + 3k + 3)}.\)

One then notices how like terms in the numerator and denominator cancel, (both in successive terms and those with an intervening term). As the product stretches from \(k = 2\) to infinity the only terms that remain uncanceled are \(\dfrac{(k - 1)k}{k^{2} - k + 1}\) for \(k = 2,\) leaving us with \(\lim_{n \rightarrow \infty} 3a_{n} = 3*\dfrac{(2 - 1)*2}{2^{2} - 2 + 1} * 3 = 3*\dfrac{2}{3} = \boxed{2}.\) – Brian Charlesworth · 1 year, 9 months ago

Log in to reply

@Brian Charlesworth Sir. So glad to have the answer from you sir. – Ritu Roy · 1 year, 9 months ago

Thanks a lotLog in to reply

I'm getting answer of question 3 as 12 is it correct?? – Shubhendra Singh · 1 year, 9 months ago

Log in to reply

@Shubhendra Singh

Oh yes yes, thanks a lotCan you have a look at others too? – Ritu Roy · 1 year, 9 months ago

Log in to reply

– Shubhendra Singh · 1 year, 9 months ago

You're welcome.Log in to reply

For roots lying in the range (-6,1) the following conditions must be satisfied

\(f(-6)>0\) and \(f(1)>0 \Rightarrow a <\dfrac{27}{4} \ \& \ a>-2\)

\(D\geq 0 \Rightarrow a \geq 6 \ \ or \ a\leq 0\)

\(-6<-(a-3)<1 \Rightarrow 2<a<9\)

These all conditions give the final result that \(a \in [6,\dfrac{27}{4})\). By this we get \([a]=6 \)

Now the AP is is formed with first term 2 and \(22^{nd} \) term as 6 this gives \(a_{3}=\dfrac{18}{7}\)

For the HP part we have an AP with first term =\(\dfrac{1}{2}\) and \(22^{nd} \) term =\(\dfrac{1}{6}\) by this we get \(\dfrac{1}{h_{18}}=\dfrac{9}{42}\)

Finally we get \(a_{3}× h_{18}=12\) – Shubhendra Singh · 1 year, 9 months ago

Log in to reply

Please help for question 4!! – Ritu Roy · 1 year, 9 months ago

Log in to reply

I'm not sure what specifically you want help with on most of those. For 3 I can tell you that the limit without absolute value doesn't exist because the function goes to -infinity is x approaches 1 from the left. – Cole Wyeth · 1 year, 9 months ago

Log in to reply

While I am fairly able to solve many series,limits questions, perhaps the lack of clear concepts stops me from solving numerous questions . Some of them are posted above. – Ritu Roy · 1 year, 9 months ago

Log in to reply

Is the answer to the second one 1. – Kritarth Lohomi · 1 year, 9 months ago

Log in to reply

– Ritu Roy · 1 year, 9 months ago

Can you elaborate on the sameLog in to reply

These are not specific doubts, it seems like you want us to do your homework. If you have some specific doubts about those problems I'm sure that the community will be glad to help you, but don't try to get us to do your homework. – Francisco Rodríguez · 1 year, 9 months ago

Log in to reply

@Francisco Rodríguez

These are definitely not my homework problems, else I would have got the required help from my teachers.

For the questions above, I get stuck with the concepts required to solve the problems. For this I request the community for help.

...... If you are aware of the cbse system, these kind of questions are not found in our school texts. These type are found in competitive exams. – Ritu Roy · 1 year, 9 months ago

Log in to reply

@Sandeep Bhardwaj @Krishna Ar @Akhil Bansal @Andrei Golovanov @Aditya Raut @Agnishom Chattopadhyay – Ritu Roy · 1 year, 9 months ago

Log in to reply

– Abdur Rehman Zahid · 1 year, 9 months ago

Please refrain from mass tagging.Tag at most 5 people if necessary.Log in to reply