1) Prove that for any \triangle ABC, we have \(\sin{A}+\sin{B}+\sin{C}\leq \frac{3\sqrt{3}}{2}. \)

2) Let a,b,c be positive real numbers. Prove that

\(\frac{a}{\sqrt{a^{2}+8bc}}+\frac{b}{\sqrt{b^{2}+8ca}}+\frac{c}{\sqrt{c^{2}+8ab}}\ge 1\)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestSolution for first one:

Note that \(\sin x\) is a concave function in the range \(0\le x\le \pi\). Thus, we use Jensen's Inequality where \(F(x)=\sin x\) to get \[\sin\left(\dfrac{1}{3}(A+B+C)\right)\ge \dfrac{1}{3}\sin A+\dfrac{1}{3}\sin B+\dfrac{1}{3}\sin C\]

Multiplying both sides by \(3\) gives \[3\sin\left(\dfrac{1}{3}(A+B+C)\right)\ge \sin A+\sin B+\sin C\]

However, \(A+B+C=\pi\). Thus, \[3\sin\left(\dfrac{1}{3}(A+B+C)\right)=3\sin\left(\dfrac{\pi}{3}\right)=\dfrac{3\sqrt{3}}{2}\]

The result follows: \[\sin A+\sin B+\sin C\le \dfrac{3\sqrt{3}}{2}\]

\(\Box\)

Log in to reply

well explained

Log in to reply

After an hour of working on the second one, I have finally proved it.

We want to prove \[\sum_{cyc}\dfrac{a}{\sqrt{a^2+8bc}}\ge 1\]

Note that since this inequality is homogenous, assume \(a+b+c=3\).

By Cauchy, \(\left(\sum_{cyc}\dfrac{a}{\sqrt{a^2+8bc}}\right)\left(\sum_{cyc}a\sqrt{a^2+8bc}\right)\ge (a+b+c)^2=9\)

Dividing both sides by \(\displaystyle\sum_{cyc}a\sqrt{a^2+8bc}\), we see that we want to prove \[\dfrac{9}{\sum\limits_{cyc}a\sqrt{a^2+8bc}}\ge 1\] or equivalently \[\sum\limits_{cyc}a\sqrt{a^2+8bc}\le 9\]

Squaring both sides, we have \[\left(\sum_{cyc}a\sqrt{a^2+8bc}\right)^2\le 81\]

Now use Cauchy again to obtain \[\left(\sum_{cyc}a\sqrt{a^2+8bc}\right)^2\le (a+b+c)\left(\sum_{cyc}a(a^2+8bc)\right)\le 81\]

Since \(a+b+c=3\), the inequality becomes \[\sum_{cyc}a^3+8abc\le 27\] after some simplifying.

But this equals \[(a+b+c)^3-3\left(\sum_{sym}a^2b\right)+18abc\le 27\] and since \(a+b+c=3\) we just want to prove \[\left(\sum_{sym}a^2b\right)\ge 6abc\] after some simplifying.

But that is true by AM-GM.

Thus, proved. QED. \(\Box\)

I have never proven something as complicated as this before, I feel so proud :')

Log in to reply

Comment deleted May 21, 2014

Log in to reply

Thanks, although I figured that out after thinking about it. I can't believe I messed up calculation at very end and though AM-GM on \(\displaystyle\sum_{sym}a^2b\) gives \[\displaystyle\sum_{sym}a^2b\ge 6(abc)^{5/6}\]

But finally, I have proved it :'D

EDIT: Wow this is an IMO problem?

Log in to reply

Log in to reply

Log in to reply

I recognized it as IMO 2001. Look up the holders approach, it is pretty spectacular and insightful.

Log in to reply

Hint for the first one. Use Jensen's inequality on \(\sin x\).

Log in to reply

@Daniel Liu

Log in to reply

I'm actually really bad at inequalities right now; I only know AM-GM and Cauchy.

EDIT: OMG I can't believe I solved the second one! I feel very accomplished right now :)

Log in to reply

Thanks really helpful great job you proved the second one

Log in to reply

Yes definitely tag him. :D

Log in to reply