If \( \large\displaystyle \int_{-\infty} ^{\infty} \left(\dfrac1e\right)^{x^2} \, dx = \sqrt{\pi} \), compute \( \Large \displaystyle \int_{-\infty}^{\infty} \dfrac{dx}{(e^x + 1) \sqrt[4]{e^{x^2} \sqrt{e^{2x^2} \sqrt{e^{3x^2} \cdots}}}} \).

If \( \large\displaystyle \int_{-\infty} ^{\infty} \left(\dfrac1e\right)^{x^2} \, dx = \sqrt{\pi} \), compute \( \Large \displaystyle \int_{-\infty}^{\infty} \dfrac{dx}{(e^x + 1) \sqrt[4]{e^{x^2} \sqrt{e^{2x^2} \sqrt{e^{3x^2} \cdots}}}} \).

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewest\[\sqrt[4]{e^{x^2}\sqrt{e^{2x^2}.....}}=e^{1/2( x^2/2+2x^2/4+3x^2/8+.....)}=e^{x^2}\] the integral becomes \[\int_{-\infty}^\infty \dfrac{dx}{e^{x^2}(e^x+1)}\] now solve this. – Aareyan Manzoor · 1 year, 7 months ago

Log in to reply

@Aareyan Manzoor – Nihar Mahajan · 1 year, 7 months ago

Log in to reply