# How can I find out last three digits

What is the last three digits of $7^{9999}$

Note by Fazla Rabbi
6 years, 7 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

By Euler's Totient Theorem, $7^{\phi(1000)}=7^{400}\equiv 1\pmod{1000}$ Now, $7^{9999}=\dfrac{7^{10000}}{7}=\dfrac{(7^{400})^{25}}{7}\equiv\dfrac{1}{7}\pmod{1000}$ Now, all that remains is to find the inverse of 7 modulo 1000. We find that $1001=7\cdot\boxed{143}$

- 6 years, 7 months ago

How do you find inverse of 7 modulo 1000?

- 6 years, 7 months ago

Find $x$ such that $7x\equiv 1\pmod{1000}$.

- 6 years, 7 months ago

hello, we get 7^9999= 136553269382062995753888031333967534967366441144053814618299639624118289555692482813359818352736683109004845067189169013486511952945398299851509339696862852588693292364812856055315481833667019291034719109951713237703052087660082582582850923689341179081676630234992600877553374267700428418914481723088971213603101623263168546834675344899286272138544956983949658212770961684123074380251529500143521951745865957533116125978306054543825594448526428259334081756548079240203548182637104133230804552734926280152213392729134869280108529612753156580538764299899062529842206980564585995693212159857559138176208301385311918025157259416421921201688253379960517015300325492079815799568129525342045026464244943981012524303890822101903154740355285032191509935317805302794819874069868078404098647111454326540255742958443602378135724797881495813967535612719029673715741345703091877208369836178719885356581506412816646513100344193407327989195809521410634193306157598268156531688496695872086280307734585665033392105797650289561563170401363733831981506746290807945261613291257930276554296921684244809517026853918626256294376554711348879989494813112191480356682049916217794295526220670195960146807663233629401477770211122183674044413903481249739671961626184372378028034538046039135684203883784939130888626733150024401839180097999140112284480723212129253469156105493317562783707500597333372269009344424465402326325997098525298264659909636859405917373102631909008659920867971880050124512207213226029510505938815966327880593100635944661369652646301791803045093426680663274117645657874688190280671926899670074084799608301784650620069466530424929755195468117396350189856699090276347834541601516282533949500024275210008675134170414334481728293990541984332646300992144531647165525656792766708792046217199444030977979514704917451903222152940107153081511334297725104075264421583055535769690667896869134675475758995878378733075725425554574012008853160338789145409605249951957746755147032071525110471549481874962010437226107991877981250639813441903785437449249384381542736387554729048147054731411281865236131746675006642000234911134820493254790552379761832242730789443211686963181616622011884031030962153200179296547376928902164885192832995935334887593307195081055005646542644447229023097550092058903624433700260887256254046918599610861751566952462841032701430260880257472824759656577936170127635202241138883351514981310891256212771284886904181123020236337310983582334640191970114691074667140422513816646160768372939606487555585783100453145870209164976626393454758274669322537929801224080425111757242456743433220099799204326711031413251768185063040740148982732543285574959868659030038774586079248678958612849543819338941989913346417175449545408626556436246848208638429470123186614656657034451619427579232583437430905184898053002367052182146399979855383331691434765666284623482968479106930322662558269042788648045680694677000682148574936029099079689618534567888963130062282622931624999179719443033103727581751185348676522526808093345291503475188461738072977707040991597647512779638021334857485506006433109854688590640115361969757931766578445782412013356278721234867635929040067030055095217271872666525271737796037069124727707997292315984174713600037168780476289070634277546578001084189095055933418700720010148558840906859630510416090775318964659984740671720809612564750095661908739686660154579703555955117101470079408015331052210550395197182346500922371789648588281674871228778336780448547624804106779764545057649048857129540227214340962197160033653202113487654363247610074985337942774092915900873448111741936990680810561749005584403129687571701190188338462867379379175303216685183119716869567769244640386995223666859131580065680858705965865001541422019472324370004124928905132595927976558526091390106398636633337425277249299719523426229732549753195631366897618307106008506596696831560124718713893121641571276326827655330573241625232244170510196181226910014644919883468044629313866914172118344550031222344798322804708315036670530005952097013530712065671411871881053382444133004730768048906939484280362564024039147392273344176514792920465660192459699033364928003952515737016303516416593436537585017118935202312649534691665781007541393741508969871290050202722059645096253579814086789224212771091755040509794770112626038175670923292752719863886101801078660167753567193157478833234632469246697098353413824100452515678182795205651121411434181703928300843757560065803985059166628999783073550984239951949060947513210649926266230432164568612164244181765637902921720137879266910999780989428171268402545126164536538989858790136415094663896789878043518850695982256883459908451280079848137629670104942069061511600368698341669730571104962951577369017792803787566637560607168732340431008184554426510814911996372967535872524257094548824875390761075661426854305070753456821675109051052504759662751362662804544694642894654551657732903276113724137296339824700017517087278678683604642485867773784391722439290485510872113436430505717911675241433576899193741687238178133601225231522150781599679533082703689963350018358891476365012248063172944134287115685438715143813060773890007745704753769145425710219931577399742475598648240751736619148094406769756456645387545704336485369084384111635776269676807935369484949959685489109462108502252696082173028742398655882474485009565139740832385226802126342671389133800039541621778097762305847576426207180261644599618736886216748787165411595828046309959482677632421144015601409411557545859437373012976105063670976989575824120550528238503277450709531821265056714655739818105438675757328498750665081737393166858466601444886121304069682828306909316724419339245466887300337425852646761564269127826275116893632978620926256849528250615106541022735369525242844195341650739698129348490785490258805162592280749578248785009562940396540901789001585718984036792543793597381732524118616016745886376809837630144938643056769313932733935284951569236289575411547579538061663108075948898850912113933799876949806105957323363153661939774834383526294648149432195585129772457026079321164273942272262537070076316846048775549437617466354525484457957672439336365301787416867696247324877705928525617292983364668224621053995865347337013954429461542920272204772169201200023989156235962724359095286810570463552002661619219319560308722921196324104046747894852469824338099698791558393524747874721706202257487785883097906746302996219922714290535864555414697653115845952536352945250468284204779133444992639929053189736024304168616716194017230818282168433888043750598616301718047946572550912586126116543490322382719217775556180270921762279635484100613201559896578784093936596069347800361160910211048334104467527892553030693304917265543459946395647075835664034722087379261920074385294242232024149942275462411864082438139047638222854126392898004052907488776094889370119287973820636966212904726509020573195091864884879665861884901426443441218510822004036211526103263980424903096352696828870881416561152341183517638418715386881951463377381197437919316125166607707016345000177166951464016006725408989327087371897369904693297981026179832210790841667632193194218050472430145300288835088994846666989953180798441894501978984964483012789061039652048571671306610949546517919181954008196263745582295008692795171628483793172248961331543261996440071096051880068313447222521583393175074105687470465371002903121730838903006050128355760143179024021022916593246906071695219586268426776440344693616188341392556629935887601562517677936056015295026024875541186997890148310597405320955118730763459138165844730324509677332114945781297056162667458536311886565382606568128745922224638041180237941789492191847397519565422095869825137077538401811558801752284902812405886509473252129196800841428891584317300366800717439295233840266124892158920106311135194156678273514856982928131531176648083524458397203238047099623459725509794061661795451667322523917121440691962524672115851443605636192531366742866734565905124589463429100869914631591762792751094594057113816703961824157654621763403848099068197441428399711142755263437643537945371366717324963462677536134871105447677976464940195555008050565990042526693583455306566396074615307983704581136849822886922292972100140976645642426967975349865939938951397967532134531662536835180795783918420006809795075241139088707163667360963111276873903914232068318375134765047039909562821461870616869003561278696162173001701606494597588916145304604453164585788185989151264170828758935601930400857143 so our answer is 143

Sonnhard.

- 6 years, 7 months ago

Wow, what an elegant solution!

- 6 years, 7 months ago

hello, I think so too

Sonnhard.

- 6 years, 7 months ago

I agree

- 6 years, 7 months ago

trolled :P

- 6 years, 7 months ago

Your profile pic and message see to have an effect on your posts...

- 6 years, 7 months ago

actually it's my posts that affects my avatar.

- 6 years, 7 months ago

Amazing solution. Nice thought process. :p

- 6 years, 7 months ago

Cool ^^

- 6 years, 7 months ago

How'd you get that?

- 6 years, 7 months ago

wolframalpha.com

- 6 years, 7 months ago

hello, I actually used mathematica

Sonnhard.

- 6 years, 7 months ago

instead of calculating $7^9999$ you should better do * remainder(7^9999/1000) * at wolphram alpha

- 6 years, 7 months ago

as you can probably tell, efficiency is not the point of my post.

- 6 years, 7 months ago

Brilliant comment. My response: what do you get by spoiling your time like this? (as you can probably tell, neither supporting you or insulting you is the point of my post)

- 6 years, 7 months ago

Ugh,you took up 2 extra bytes from my cache >.<

- 6 years, 7 months ago

Ryan S. seems to have made a joke out of this question, but I must confess there's been something bugging me about questions like this, and I wonder if Ryan's answer was really so much of a joke after all. To wit, is there is use for information like this? Is there ever a need to find the last n digits of some humongous number? Is it just play, or showing off that you can do it without a computer, or is there an actual application?

Put another way, in the real world, would we ever want to know the answer to this question? Would we ever not just do what Ryan S. did (i.e., ask a computer)?

(And please, no "a psychotic wizard kidnaps you and you have to answer without a computer or he divides by zero, destroying the universe" types of answers.)

- 6 years, 7 months ago

How can I find last three digit in 56^789

- 2 years, 6 months ago

ans is 343..... asking how...??? well its called answering by 6th sense

- 6 years, 7 months ago