# How can I find out last three digits

What is the last three digits of $$7^{9999}$$

Note by Fazla Rabbi
4 years, 8 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

## Comments

Sort by:

Top Newest

By Euler's Totient Theorem, $7^{\phi(1000)}=7^{400}\equiv 1\pmod{1000}$ Now, $7^{9999}=\dfrac{7^{10000}}{7}=\dfrac{(7^{400})^{25}}{7}\equiv\dfrac{1}{7}\pmod{1000}$ Now, all that remains is to find the inverse of 7 modulo 1000. We find that $1001=7\cdot\boxed{143}$

- 4 years, 8 months ago

Log in to reply

How do you find inverse of 7 modulo 1000?

- 4 years, 8 months ago

Log in to reply

Find $$x$$ such that $$7x\equiv 1\pmod{1000}$$.

- 4 years, 8 months ago

Log in to reply

hello, we get 7^9999= 136553269382062995753888031333967534967366441144053814618299639624118289555692482813359818352736683109004845067189169013486511952945398299851509339696862852588693292364812856055315481833667019291034719109951713237703052087660082582582850923689341179081676630234992600877553374267700428418914481723088971213603101623263168546834675344899286272138544956983949658212770961684123074380251529500143521951745865957533116125978306054543825594448526428259334081756548079240203548182637104133230804552734926280152213392729134869280108529612753156580538764299899062529842206980564585995693212159857559138176208301385311918025157259416421921201688253379960517015300325492079815799568129525342045026464244943981012524303890822101903154740355285032191509935317805302794819874069868078404098647111454326540255742958443602378135724797881495813967535612719029673715741345703091877208369836178719885356581506412816646513100344193407327989195809521410634193306157598268156531688496695872086280307734585665033392105797650289561563170401363733831981506746290807945261613291257930276554296921684244809517026853918626256294376554711348879989494813112191480356682049916217794295526220670195960146807663233629401477770211122183674044413903481249739671961626184372378028034538046039135684203883784939130888626733150024401839180097999140112284480723212129253469156105493317562783707500597333372269009344424465402326325997098525298264659909636859405917373102631909008659920867971880050124512207213226029510505938815966327880593100635944661369652646301791803045093426680663274117645657874688190280671926899670074084799608301784650620069466530424929755195468117396350189856699090276347834541601516282533949500024275210008675134170414334481728293990541984332646300992144531647165525656792766708792046217199444030977979514704917451903222152940107153081511334297725104075264421583055535769690667896869134675475758995878378733075725425554574012008853160338789145409605249951957746755147032071525110471549481874962010437226107991877981250639813441903785437449249384381542736387554729048147054731411281865236131746675006642000234911134820493254790552379761832242730789443211686963181616622011884031030962153200179296547376928902164885192832995935334887593307195081055005646542644447229023097550092058903624433700260887256254046918599610861751566952462841032701430260880257472824759656577936170127635202241138883351514981310891256212771284886904181123020236337310983582334640191970114691074667140422513816646160768372939606487555585783100453145870209164976626393454758274669322537929801224080425111757242456743433220099799204326711031413251768185063040740148982732543285574959868659030038774586079248678958612849543819338941989913346417175449545408626556436246848208638429470123186614656657034451619427579232583437430905184898053002367052182146399979855383331691434765666284623482968479106930322662558269042788648045680694677000682148574936029099079689618534567888963130062282622931624999179719443033103727581751185348676522526808093345291503475188461738072977707040991597647512779638021334857485506006433109854688590640115361969757931766578445782412013356278721234867635929040067030055095217271872666525271737796037069124727707997292315984174713600037168780476289070634277546578001084189095055933418700720010148558840906859630510416090775318964659984740671720809612564750095661908739686660154579703555955117101470079408015331052210550395197182346500922371789648588281674871228778336780448547624804106779764545057649048857129540227214340962197160033653202113487654363247610074985337942774092915900873448111741936990680810561749005584403129687571701190188338462867379379175303216685183119716869567769244640386995223666859131580065680858705965865001541422019472324370004124928905132595927976558526091390106398636633337425277249299719523426229732549753195631366897618307106008506596696831560124718713893121641571276326827655330573241625232244170510196181226910014644919883468044629313866914172118344550031222344798322804708315036670530005952097013530712065671411871881053382444133004730768048906939484280362564024039147392273344176514792920465660192459699033364928003952515737016303516416593436537585017118935202312649534691665781007541393741508969871290050202722059645096253579814086789224212771091755040509794770112626038175670923292752719863886101801078660167753567193157478833234632469246697098353413824100452515678182795205651121411434181703928300843757560065803985059166628999783073550984239951949060947513210649926266230432164568612164244181765637902921720137879266910999780989428171268402545126164536538989858790136415094663896789878043518850695982256883459908451280079848137629670104942069061511600368698341669730571104962951577369017792803787566637560607168732340431008184554426510814911996372967535872524257094548824875390761075661426854305070753456821675109051052504759662751362662804544694642894654551657732903276113724137296339824700017517087278678683604642485867773784391722439290485510872113436430505717911675241433576899193741687238178133601225231522150781599679533082703689963350018358891476365012248063172944134287115685438715143813060773890007745704753769145425710219931577399742475598648240751736619148094406769756456645387545704336485369084384111635776269676807935369484949959685489109462108502252696082173028742398655882474485009565139740832385226802126342671389133800039541621778097762305847576426207180261644599618736886216748787165411595828046309959482677632421144015601409411557545859437373012976105063670976989575824120550528238503277450709531821265056714655739818105438675757328498750665081737393166858466601444886121304069682828306909316724419339245466887300337425852646761564269127826275116893632978620926256849528250615106541022735369525242844195341650739698129348490785490258805162592280749578248785009562940396540901789001585718984036792543793597381732524118616016745886376809837630144938643056769313932733935284951569236289575411547579538061663108075948898850912113933799876949806105957323363153661939774834383526294648149432195585129772457026079321164273942272262537070076316846048775549437617466354525484457957672439336365301787416867696247324877705928525617292983364668224621053995865347337013954429461542920272204772169201200023989156235962724359095286810570463552002661619219319560308722921196324104046747894852469824338099698791558393524747874721706202257487785883097906746302996219922714290535864555414697653115845952536352945250468284204779133444992639929053189736024304168616716194017230818282168433888043750598616301718047946572550912586126116543490322382719217775556180270921762279635484100613201559896578784093936596069347800361160910211048334104467527892553030693304917265543459946395647075835664034722087379261920074385294242232024149942275462411864082438139047638222854126392898004052907488776094889370119287973820636966212904726509020573195091864884879665861884901426443441218510822004036211526103263980424903096352696828870881416561152341183517638418715386881951463377381197437919316125166607707016345000177166951464016006725408989327087371897369904693297981026179832210790841667632193194218050472430145300288835088994846666989953180798441894501978984964483012789061039652048571671306610949546517919181954008196263745582295008692795171628483793172248961331543261996440071096051880068313447222521583393175074105687470465371002903121730838903006050128355760143179024021022916593246906071695219586268426776440344693616188341392556629935887601562517677936056015295026024875541186997890148310597405320955118730763459138165844730324509677332114945781297056162667458536311886565382606568128745922224638041180237941789492191847397519565422095869825137077538401811558801752284902812405886509473252129196800841428891584317300366800717439295233840266124892158920106311135194156678273514856982928131531176648083524458397203238047099623459725509794061661795451667322523917121440691962524672115851443605636192531366742866734565905124589463429100869914631591762792751094594057113816703961824157654621763403848099068197441428399711142755263437643537945371366717324963462677536134871105447677976464940195555008050565990042526693583455306566396074615307983704581136849822886922292972100140976645642426967975349865939938951397967532134531662536835180795783918420006809795075241139088707163667360963111276873903914232068318375134765047039909562821461870616869003561278696162173001701606494597588916145304604453164585788185989151264170828758935601930400857143 so our answer is 143

Sonnhard.

- 4 years, 8 months ago

Log in to reply

Wow, what an elegant solution!

- 4 years, 8 months ago

Log in to reply

hello, I think so too

Sonnhard.

- 4 years, 8 months ago

Log in to reply

trolled :P

- 4 years, 8 months ago

Log in to reply

I agree

- 4 years, 8 months ago

Log in to reply

Amazing solution. Nice thought process. :p

- 4 years, 8 months ago

Log in to reply

Your profile pic and message see to have an effect on your posts...

- 4 years, 8 months ago

Log in to reply

actually it's my posts that affects my avatar.

- 4 years, 8 months ago

Log in to reply

Ugh,you took up 2 extra bytes from my cache >.<

- 4 years, 8 months ago

Log in to reply

instead of calculating $$7^9999$$ you should better do * remainder(7^9999/1000) * at wolphram alpha

- 4 years, 8 months ago

Log in to reply

as you can probably tell, efficiency is not the point of my post.

- 4 years, 8 months ago

Log in to reply

Brilliant comment. My response: what do you get by spoiling your time like this? (as you can probably tell, neither supporting you or insulting you is the point of my post)

- 4 years, 8 months ago

Log in to reply

How'd you get that?

- 4 years, 8 months ago

Log in to reply

Log in to reply

hello, I actually used mathematica

Sonnhard.

- 4 years, 8 months ago

Log in to reply

Cool ^^

- 4 years, 8 months ago

Log in to reply

Ryan S. seems to have made a joke out of this question, but I must confess there's been something bugging me about questions like this, and I wonder if Ryan's answer was really so much of a joke after all. To wit, is there is use for information like this? Is there ever a need to find the last n digits of some humongous number? Is it just play, or showing off that you can do it without a computer, or is there an actual application?

Put another way, in the real world, would we ever want to know the answer to this question? Would we ever not just do what Ryan S. did (i.e., ask a computer)?

(And please, no "a psychotic wizard kidnaps you and you have to answer without a computer or he divides by zero, destroying the universe" types of answers.)

- 4 years, 8 months ago

Log in to reply

How can I find last three digit in 56^789

- 7 months, 2 weeks ago

Log in to reply

ans is 343..... asking how...??? well its called answering by 6th sense

- 4 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...