# How should I approach this problem?

Let $$ABC$$ be a triangle with $$AB = AC$$ and $$\angle BAC = 30^{\circ}$$, Let $$A'$$ be the reflection of $$A$$ in the line $$BC$$; $$B'$$ be the reflection of $$B$$ in the line $$CA$$; $$C'$$ be the reflection of $$C$$ in line $$AB$$, Show that $$A'B'C'$$ is an equilateral triangle.

Any help will be appreciated.

Note by Shashank Rammoorthy
2 years, 6 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Draw the figure and notice that connecting points BCB'C' results in a rectangle because the diagonals (CC' and BB' bisect each other). AA' contains a segment that bisects B'C' and also bisects rectangle BCB'C' vertically in to 2 smaller congruent rectangles, whose diagonals are congruent, A'C' = A'B'. Since A'B is half of A'C', all three sides of triangle A'B'C' are equal and it is equilateral.

- 2 years, 6 months ago

Please look at my solution. Thank you.

- 2 years, 6 months ago