Ok so we know that Harmonic series \(\displaystyle H_n = \sum_{k=1}^n\dfrac1k\) diverges. And by integral test, we can see that \[\ln(n+1) = \int_{1}^{n+1} \dfrac{\mathrm d x}x ~~~<~~~ H_n ~~~<~~~ 1+\int_1^n\dfrac{\mathrm d x}x = 1+\ln(n)\]

Saying we use a computer that add a million of terms per second, and we have it doing that for a million years.

That would be \(n = 60^2\cdot24\cdot365\cdot10^{12} < 3.2\cdot10^{19}\)

Hence \(\ln(n) < \ln(3.2) + 19\ln(10) < 45\). Since \(H_n < 1 + \ln(n)\), that means after million years of addition, \(H_n\) still hasn't reached \(46\). Wow!

Isn't it amazing that \(H_n\) grows extremely slow, yet it diverges?

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestSomewhat relevant.

Log in to reply