HOW TO expand determinants

  • To expand 2×22\times 2 Determinant

X=abcdX=adbcX=\begin{vmatrix} a & b \\ c & d \end{vmatrix}\\ X=ad-bc

practice here

  • To expand 3×33\times 3 Determinant

you can use the first row to expand the determinant by multiplying each element in the first raw by its sign [(1)(R+C){ (-1) }^{ (R+C) } when R is the row number and C is the column number] by the remaining 2×22\times 2determinant [delete the elements which have the same row number and the same column number and put the remaining element as 2×22\times 2 determinant] then add the three results.

X=abcdefghiX=a11b12c13d21e22f23g31h32i33X=(1)(1+1)a×efhi+(1)(1+2)bdfgi+(1)(1+3)cdeghX=a×efhibdfgi+cdeghX=a×(eifh)b×(difg)+c×(dheg)X=\left| \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \end{matrix} \right| \\ X=\left| \begin{matrix} { a }_{ 11 } & { b }_{ 12 } & { c }_{ 13 } \\ { d }_{ 21 } & { e }_{ 22 } & { f }_{ 23 } \\ { g }_{ 31 } & { h }_{ 32 } & { i }_{ 33 } \end{matrix} \right| \\ X={ (-1) }^{ (1+1) }a\times \begin{vmatrix} e & f \\ h & i \end{vmatrix}+{ (-1) }^{ (1+2) }b\begin{vmatrix} d & f \\ g & i \end{vmatrix}+{ (-1) }^{ (1+3) }c\begin{vmatrix} d & e \\ g & h \end{vmatrix}\\ X=a\times \begin{vmatrix} e & f \\ h & i \end{vmatrix}-b\begin{vmatrix} d & f \\ g & i \end{vmatrix}+c\begin{vmatrix} d & e \\ g & h \end{vmatrix}\\ X=a\times (ei-fh)-b\times (di-fg)+c\times (dh-eg)

NOTE: When you expand, you can use any row or any column for example you can expand the above determinant by the second column as:

X=abcdefghiX=a11b12c13d21e22f23g31h32i33X=(1)(1+2)b×dfgi+(1)(2+2)eacgi+(1)(3+2)hacdfX=b×dfgi+eacgihacdfX=b×(difg)+e×(aicg)h×(afcd)X=\left| \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \end{matrix} \right| \\ X=\left| \begin{matrix} { a }_{ 11 } & { b }_{ 12 } & { c }_{ 13 } \\ { d }_{ 21 } & { e }_{ 22 } & { f }_{ 23 } \\ { g }_{ 31 } & { h }_{ 32 } & { i }_{ 33 } \end{matrix} \right| \\ X={ (-1) }^{ (1+2) }b\times \begin{vmatrix} d & f \\ g & i \end{vmatrix}+{ (-1) }^{ (2+2) }e\begin{vmatrix} a & c \\ g & i \end{vmatrix}+{ (-1) }^{ (3+2) }h\begin{vmatrix} a & c \\ d & f \end{vmatrix}\\ X=-b\times \begin{vmatrix} d & f \\ g & i \end{vmatrix}+e\begin{vmatrix} a & c \\ g & i \end{vmatrix}-h\begin{vmatrix} a & c \\ d & f \end{vmatrix}\\ X=-b\times (di-fg)+e\times (ai-cg)-h\times (af-cd)

practice here

  • To solve more than 3×33\times 3 determinants

An easy way to solve more than 3×33\times 3 determinant is converting it to triangular or diagonal determinant

1- Triangular determinant:

a. Upper triangular determinant: Elements which are under the main diagonal are zero X=abcd0fgh00kl000pX=a×f×k×pX=\begin{vmatrix} a & b & c & d \\ 0 & f & g & h \\ 0 & 0 & k & l \\ 0 & 0 & 0 & p \end{vmatrix}\\ X=a\times f\times k\times p

b. Lower triangular determinant: Elements which are above the main diagonal are zero X=a000ef00ijk0mnopX=a×f×k×pX=\begin{vmatrix} a & 0 & 0 & 0 \\ e & f & 0 & 0 \\ i & j & k & 0 \\ m & n & o & p \end{vmatrix}\\ \\ X=a\times f\times k\times p

2- Diagonal determinant:Elements which are under and above the main diagonal are zero X=a0000f0000k0000pX=a×f×k×pX=\begin{vmatrix} a & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & k & 0 \\ 0 & 0 & 0 & p \end{vmatrix}\\ \\ X=a\times f\times k\times p

practice here

Note by Abdulrahman El Shafei
4 years, 5 months ago

No vote yet
1 vote

</code>...<code></code> ... <code>.">   Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in </span>...<span></span> ... <span> or </span>...<span></span> ... <span> to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Sort by:

Top Newest

Brilliant WIKI's are waiting for this contribution

U Z - 4 years, 5 months ago

Log in to reply

How can I contribute by this note ?

Abdulrahman El Shafei - 4 years, 5 months ago

Log in to reply

@Calvin Lin How would you do that?

Mardokay Mosazghi - 4 years, 5 months ago

Log in to reply

nice note @abdulrahman khaled

Mardokay Mosazghi - 4 years, 5 months ago

Log in to reply

Thanks :-)

Abdulrahman El Shafei - 4 years, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...