Waste less time on Facebook — follow Brilliant.
×

HOW TO expand determinants

  • To expand \(2\times 2\) Determinant

\(X=\begin{vmatrix} a & b \\ c & d \end{vmatrix}\\ X=ad-bc\)

practice here

  • To expand \(3\times 3\) Determinant

you can use the first row to expand the determinant by multiplying each element in the first raw by its sign [\({ (-1) }^{ (R+C) }\) when R is the row number and C is the column number] by the remaining \(2\times 2\)determinant [delete the elements which have the same row number and the same column number and put the remaining element as \(2\times 2\) determinant] then add the three results.

\(X=\left| \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \end{matrix} \right| \\ X=\left| \begin{matrix} { a }_{ 11 } & { b }_{ 12 } & { c }_{ 13 } \\ { d }_{ 21 } & { e }_{ 22 } & { f }_{ 23 } \\ { g }_{ 31 } & { h }_{ 32 } & { i }_{ 33 } \end{matrix} \right| \\ X={ (-1) }^{ (1+1) }a\times \begin{vmatrix} e & f \\ h & i \end{vmatrix}+{ (-1) }^{ (1+2) }b\begin{vmatrix} d & f \\ g & i \end{vmatrix}+{ (-1) }^{ (1+3) }c\begin{vmatrix} d & e \\ g & h \end{vmatrix}\\ X=a\times \begin{vmatrix} e & f \\ h & i \end{vmatrix}-b\begin{vmatrix} d & f \\ g & i \end{vmatrix}+c\begin{vmatrix} d & e \\ g & h \end{vmatrix}\\ X=a\times (ei-fh)-b\times (di-fg)+c\times (dh-eg)\)

NOTE: When you expand, you can use any row or any column for example you can expand the above determinant by the second column as:

\(X=\left| \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \end{matrix} \right| \\ X=\left| \begin{matrix} { a }_{ 11 } & { b }_{ 12 } & { c }_{ 13 } \\ { d }_{ 21 } & { e }_{ 22 } & { f }_{ 23 } \\ { g }_{ 31 } & { h }_{ 32 } & { i }_{ 33 } \end{matrix} \right| \\ X={ (-1) }^{ (1+2) }b\times \begin{vmatrix} d & f \\ g & i \end{vmatrix}+{ (-1) }^{ (2+2) }e\begin{vmatrix} a & c \\ g & i \end{vmatrix}+{ (-1) }^{ (3+2) }h\begin{vmatrix} a & c \\ d & f \end{vmatrix}\\ X=-b\times \begin{vmatrix} d & f \\ g & i \end{vmatrix}+e\begin{vmatrix} a & c \\ g & i \end{vmatrix}-h\begin{vmatrix} a & c \\ d & f \end{vmatrix}\\ X=-b\times (di-fg)+e\times (ai-cg)-h\times (af-cd)\)

practice here

  • To solve more than \(3\times 3\) determinants

An easy way to solve more than \(3\times 3\) determinant is converting it to triangular or diagonal determinant

1- Triangular determinant:

a. Upper triangular determinant: Elements which are under the main diagonal are zero \(X=\begin{vmatrix} a & b & c & d \\ 0 & f & g & h \\ 0 & 0 & k & l \\ 0 & 0 & 0 & p \end{vmatrix}\\ X=a\times f\times k\times p\)

b. Lower triangular determinant: Elements which are above the main diagonal are zero \(X=\begin{vmatrix} a & 0 & 0 & 0 \\ e & f & 0 & 0 \\ i & j & k & 0 \\ m & n & o & p \end{vmatrix}\\ \\ X=a\times f\times k\times p\)

2- Diagonal determinant:Elements which are under and above the main diagonal are zero \(X=\begin{vmatrix} a & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & k & 0 \\ 0 & 0 & 0 & p \end{vmatrix}\\ \\ X=a\times f\times k\times p\)

practice here

Note by A K
2 years, 4 months ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

Brilliant WIKI's are waiting for this contribution Megh Choksi · 2 years, 4 months ago

Log in to reply

@Megh Choksi How can I contribute by this note ? A K · 2 years, 4 months ago

Log in to reply

@A K @Calvin Lin How would you do that? Mardokay Mosazghi · 2 years, 4 months ago

Log in to reply

nice note @abdulrahman khaled Mardokay Mosazghi · 2 years, 4 months ago

Log in to reply

@Mardokay Mosazghi Thanks :-) A K · 2 years, 4 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...