With \(\cos^2 A + \sin^2 A = 1 \) and \(\sin(2A) = 2\sin A \cos A\), you can simplify the integrand to \( \frac2{4-\sin^2(2x)} \). Then multiply top and bottom by 2, substitute \(2\sin^2 (2x) = 1 - \cos(4x) \), then apply Tangent half angle substitution.

The numerator of the integrand can be factored into \( (\cos x + \sin x)(1 - \cos x \sin x) \). The denominator can be simplified like the previous one, then multiply top and bottom by 2, you're left with \( \frac{ ( \cos x + \sin x)(2 - 2\sin x \cos x)}{4 - \sin^2 (2x)} = \frac{ ( \cos x + \sin x)(2 - \sin(2x))}{(2 - \sin (2x))(2 + \sin(2x))} = \frac{\cos x + \sin x}{2 + \sin(2x)} = \frac{\cos x + \sin x}{3 - (\sin x - \cos x)^2} \). Set \(y = \sin x - \cos x \), then you're left with a familiar integral \( \int \frac{dz}{a^2-z^2} \), in this case \(a = \sqrt 3 \). Finish it off via partial fraction - cover up rule, and substitute everything back.

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestWith \(\cos^2 A + \sin^2 A = 1 \) and \(\sin(2A) = 2\sin A \cos A\), you can simplify the integrand to \( \frac2{4-\sin^2(2x)} \). Then multiply top and bottom by 2, substitute \(2\sin^2 (2x) = 1 - \cos(4x) \), then apply Tangent half angle substitution.

Log in to reply

Nice !

\[\int\frac{cos^{3}(x)+sin^{3}(x)}{1+sin^{4}(x)+cos^{4}(x)} dx\]

What about this ?

Log in to reply

The numerator of the integrand can be factored into \( (\cos x + \sin x)(1 - \cos x \sin x) \). The denominator can be simplified like the previous one, then multiply top and bottom by 2, you're left with \( \frac{ ( \cos x + \sin x)(2 - 2\sin x \cos x)}{4 - \sin^2 (2x)} = \frac{ ( \cos x + \sin x)(2 - \sin(2x))}{(2 - \sin (2x))(2 + \sin(2x))} = \frac{\cos x + \sin x}{2 + \sin(2x)} = \frac{\cos x + \sin x}{3 - (\sin x - \cos x)^2} \). Set \(y = \sin x - \cos x \), then you're left with a familiar integral \( \int \frac{dz}{a^2-z^2} \), in this case \(a = \sqrt 3 \). Finish it off via partial fraction - cover up rule, and substitute everything back.

Log in to reply

Log in to reply