New user? Sign up

Existing user? Sign in

How to find the value of this equation? I've tried about the multiplication and addition of sine and cosine, but it still useless, and I always ended up with the sin 10 at the end.

Note by Leonardo Chandra 4 years, 4 months ago

Easy Math Editor

*italics*

_italics_

**bold**

__bold__

- bulleted- list

1. numbered2. list

paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)

> This is a quote

This is a quote

# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"

2 \times 3

2^{34}

a_{i-1}

\frac{2}{3}

\sqrt{2}

\sum_{i=1}^3

\sin \theta

\boxed{123}

Sort by:

Recall the identities

\( \sin (A) + \sin (B) = 2 \sin ( \frac {A+B}{2} ) \space \cos ( \frac {A-B}{2} ) \)

\( - \cos (A) + \cos (B) = 2 \sin ( \frac {A+B}{2} ) \space \sin ( \frac {A-B}{2} ) \)

\( \cos (A) + \cos (B) = 2 \cos ( \frac {A+B}{2} ) \space \cos ( \frac {A-B}{2} ) \)

We have,

\( \large \frac {1}{\sin (10^\circ )} + \frac {1}{\sin (50^\circ )} - \frac {1}{\sin (70^\circ )}\)

\( \large = \frac {1}{\sin (10^\circ )} + \frac {1}{\sin (50^\circ )} - \frac {1}{\cos (20^\circ )}\), because \( \sin (A) = \cos (90^\circ - A) \)

\( \large = \frac {2 ( \space \sin (50^\circ ) + \sin (10^\circ ) \space ) } { 2 \sin (50^\circ ) \space \sin (10^\circ ) } - \frac {1}{\cos (20^\circ )} \)

\( \large = \frac {2 (2 \sin (30^\circ) \cos (20^\circ) ) } { - \cos (60^\circ) + \cos (40^\circ) } - \frac {1}{\cos (20^\circ )} \)

\( \large = \frac {4 \cos (20^\circ) } { - 1 + 2\cos (40^\circ) } - \frac {1}{\cos (20^\circ )} \)

\( \large = \frac {4 \cos^2 (20^\circ) -2 \cos (40^\circ) + 1} { 2 \cos (40^\circ) \space \cos (20^\circ) - \cos (20^\circ) } \)

\( \large = \frac {4 \cos^2 (20^\circ) - 2 -2 \cos (40^\circ) + 3} { ( \space \cos (60^\circ) + \cos (20^\circ) ) - \cos (20^\circ) } \)

\( \large = \frac { 2( 2 \cos^2 (20^\circ) - 1 ) -2 \cos (40^\circ) + 3} { \cos (60^\circ) } \), because we want to apply \( \cos (2A) = 2 \cos^2 (A) - 1 \)

\( \large = \frac { 2 \cos (40^\circ) -2 \cos (40^\circ) + 3} { \frac {1}{2} } \)

\( \large = 3 \times 2 = 6 \)

Log in to reply

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestRecall the identities

\( \sin (A) + \sin (B) = 2 \sin ( \frac {A+B}{2} ) \space \cos ( \frac {A-B}{2} ) \)

\( - \cos (A) + \cos (B) = 2 \sin ( \frac {A+B}{2} ) \space \sin ( \frac {A-B}{2} ) \)

\( \cos (A) + \cos (B) = 2 \cos ( \frac {A+B}{2} ) \space \cos ( \frac {A-B}{2} ) \)

We have,

\( \large \frac {1}{\sin (10^\circ )} + \frac {1}{\sin (50^\circ )} - \frac {1}{\sin (70^\circ )}\)

\( \large = \frac {1}{\sin (10^\circ )} + \frac {1}{\sin (50^\circ )} - \frac {1}{\cos (20^\circ )}\), because \( \sin (A) = \cos (90^\circ - A) \)

\( \large = \frac {2 ( \space \sin (50^\circ ) + \sin (10^\circ ) \space ) } { 2 \sin (50^\circ ) \space \sin (10^\circ ) } - \frac {1}{\cos (20^\circ )} \)

\( \large = \frac {2 (2 \sin (30^\circ) \cos (20^\circ) ) } { - \cos (60^\circ) + \cos (40^\circ) } - \frac {1}{\cos (20^\circ )} \)

\( \large = \frac {4 \cos (20^\circ) } { - 1 + 2\cos (40^\circ) } - \frac {1}{\cos (20^\circ )} \)

\( \large = \frac {4 \cos^2 (20^\circ) -2 \cos (40^\circ) + 1} { 2 \cos (40^\circ) \space \cos (20^\circ) - \cos (20^\circ) } \)

\( \large = \frac {4 \cos^2 (20^\circ) - 2 -2 \cos (40^\circ) + 3} { ( \space \cos (60^\circ) + \cos (20^\circ) ) - \cos (20^\circ) } \)

\( \large = \frac { 2( 2 \cos^2 (20^\circ) - 1 ) -2 \cos (40^\circ) + 3} { \cos (60^\circ) } \), because we want to apply \( \cos (2A) = 2 \cos^2 (A) - 1 \)

\( \large = \frac { 2 \cos (40^\circ) -2 \cos (40^\circ) + 3} { \frac {1}{2} } \)

\( \large = 3 \times 2 = 6 \)

Log in to reply