How to solve?

Let \(\triangle{ABC}\) be equilateral. \(P\) is a point in the triangle such that \(AP, BP, CP = 2, 2\sqrt{3},4\) respectively. Find \(\angle{BPC}\)

Note by Victor Loh
4 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Let \(X,Y,Z\) be the reflections of \(P\) w.r.t. \(AB,BC,CA\). Then \(XYZ\) is a triangle with side lengths \(a, \sqrt{3}a, 2a\) where \(a=2\sqrt{3}\). It's obvious that \(XYZ\) is a right triangle with \(\angle{XYZ}=30^{\circ}\). Hence \(\angle{BPC}=\angle{BYC} = \angle{BYX} + \angle{XYZ} + \angle{ZYC} = 30^{\circ}+30^{\circ}+30^{\circ}=90^{\circ}\).

George G - 4 years, 5 months ago

Log in to reply

One way can be finding the area of the \(ΔABC\) considering each side of the equilateral triangle be \(x\) using Heron's formula and then finding the area of the three small triangles inside \(ΔABC\) in a similar way and then comparing them we get value of \(x\).Now using the formula \(1/2 \times BP \times PC \times \sin \angle BPC=ar(ΔBPC)\) and solving for \(\sin \angle BPC\) we get our answer.

Bhargav Das - 4 years, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...