I don't know the simplest way

\[\frac{ \pi \times \left(\frac{1.5}{2}\right)^2 \times 10^4 \times 9.8 \times 5}{25 \times 60 \times 746} =?\]

How to solve it without a calculator?

Note by Munem Sahariar
9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\(\frac { (\pi ){ \quad \cdot \quad (0.75) }^{ 2 }\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (\frac { 49 }{ 5 } )\quad \cdot \quad (5) }{ (25)\quad \cdot \quad (60)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (\frac { 9 }{ 16 } )\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (49) }{ (25)\quad \cdot \quad (60)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (9)\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (25)\quad \cdot \quad (60)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (25)\quad \cdot \quad (20)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad (400)\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (20)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad (20)\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad (5)\quad \cdot \quad (49) }{ (4)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (735) }{ (2984) } \\ \\ \frac { 735\pi }{ 2984 }\)

Kevin Tran - 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...