×

# I don't know the simplest way

$\frac{ \pi \times \left(\frac{1.5}{2}\right)^2 \times 10^4 \times 9.8 \times 5}{25 \times 60 \times 746} =?$

How to solve it without a calculator?

Note by Munem Sahariar
4 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

$$\frac { (\pi ){ \quad \cdot \quad (0.75) }^{ 2 }\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (\frac { 49 }{ 5 } )\quad \cdot \quad (5) }{ (25)\quad \cdot \quad (60)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (\frac { 9 }{ 16 } )\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (49) }{ (25)\quad \cdot \quad (60)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (9)\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (25)\quad \cdot \quad (60)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (25)\quad \cdot \quad (20)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad (400)\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (20)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad (20)\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad (5)\quad \cdot \quad (49) }{ (4)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (735) }{ (2984) } \\ \\ \frac { 735\pi }{ 2984 }$$

- 4 months ago