Waste less time on Facebook — follow Brilliant.
×

I don't know the simplest way

\[\frac{ \pi \times \left(\frac{1.5}{2}\right)^2 \times 10^4 \times 9.8 \times 5}{25 \times 60 \times 746} =?\]

How to solve it without a calculator?

Note by Munem Sahariar
1 month ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

\(\frac { (\pi ){ \quad \cdot \quad (0.75) }^{ 2 }\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (\frac { 49 }{ 5 } )\quad \cdot \quad (5) }{ (25)\quad \cdot \quad (60)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (\frac { 9 }{ 16 } )\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (49) }{ (25)\quad \cdot \quad (60)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (9)\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (25)\quad \cdot \quad (60)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad ({ 10) }^{ 4 }\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (25)\quad \cdot \quad (20)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad (400)\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (20)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad (20)\quad \cdot \quad (49) }{ (16)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (3)\quad \cdot \quad (5)\quad \cdot \quad (49) }{ (4)\quad \cdot \quad (746) } \\ \\ \frac { (\pi )\quad \cdot \quad (735) }{ (2984) } \\ \\ \frac { 735\pi }{ 2984 }\)

Kevin Tran - 1 month ago

Log in to reply

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...