# Need help!

What is the probability of four cards of same value from a deck of cards???

Note by Tarek Shovon
2 years, 11 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

I assume it's a deck of poker cards with 52 distinct cards and no jokers. Well, obviously you need to have the first card drawn, which can be anything.

Then the second, third, fourth card must be of the same value with the first card.

The probability that the second card is the same as the first card is equivalent of choosing 1 out 3 remaining cards out of 51 cards.

The probability that the second card is the same as the first card is equivalent of choosing 1 out 2 remaining cards out of 50 cards.

The probability that the second card is the same as the first card is equivalent of choosing 1 out 1 remaining card out of 49 cards.

So the answer is simply $$\frac3{51} \times \frac2{50} \times \frac1{49}$$.

- 2 years, 11 months ago