Is there a better way to find the following sum ? I mean is there a better approximation possible ?

\[\sum_{n=1}^{\infty} \sqrt {1+n^4} -n^2\]

A possible way could be :

\[ S = \displaystyle \sum_{n=1}^{\infty} \sqrt{1 + n^{4}} - n^{2} \\ S = \displaystyle \sum_{n=1}^{\infty} \frac { \left ( \sqrt{1 + n^{4}} - n^{2} \right ) \left ( \sqrt{1 + n^{4}} + n^{2} \right ) }{ \sqrt{1 + n^{4}} + n^{2} } \\= \displaystyle \sum_{n=1}^{\infty} \frac { 1 } { \sqrt{1 + n^{4}} + n^{2} } \\\\ \text{Now we can make an approximation that } \\\\S < \displaystyle \sum_{n=1}^{\infty} \frac { 1 } { \sqrt{ n^{4}} + n^{2} } \\ S < \displaystyle \sum_{n=1}^{\infty} \frac { 1 } { 2 n^{2} } \\ S < \displaystyle {\frac { \pi^{2}}{12} } \]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestIf you just want a better approximation, just calculate the sum of first few terms by hand, and use approximation for the rest.

Log in to reply

I guess that'll do it but ok I'll try

Log in to reply

@Brian Charlesworth sir,@Kartik Sharma ,@Pratik Shastri ,@Ronak Agarwal ,@Vraj Mehta

Log in to reply

@Akshay Bodhare So you are back ?

Log in to reply

Sorry for replying after a long time,

\(\frac{\pi^2}{12} \approx 0.8224\)

This bound is not tight enough,I suggest that you should use Cauchy-Schwarz inequality in last step to get the better approximation,

\(S\approx\dfrac{\pi \coth {\frac{\pi}{\sqrt{1+\sqrt{2}}}}-\sqrt{1+\sqrt{2}}}{\sqrt{2(1+\sqrt{2})}}\approx 0.7736211057\)

Btw,the sum coverges slowly

The approximate value of the sum according to CAS is,

\(S \approx 0.7345725812\)

Log in to reply

Nice , I wonder why it didn't strike me ! +1

Also I'll try to think up a question based on it .

Log in to reply

this? I want to solve it!But if you think that I am violating any guidelines of Brilliant , you can delete this comment.

Could you please give me some hint(not solution) forLog in to reply

Also I can't delete any comment , I'm not a moderator you see !

Log in to reply

I thought you were a moderator, Sorry to bother you.

Log in to reply

Log in to reply

Log in to reply

I'll discuss with some of my other friends and I'll definitely get back to you :)

Log in to reply