I think you can solve this question by calculating the equivalent permittivity between the two charges. Consider the charges and separated by two mediums in series having permittivities epsilon 1 and epsilon 2. The effective permittivity, from my knowledge, would be 2 times epsilon1 * epsilon2 divided by (epsilon1 + epsilon2). Just put this in the Force equation for 2 electric charges with epsilon substituted as the effective epsilon, you'll get the answer.

I think you can solve this question by calculating the equivalent permittivity between the two charges. Consider the charges \(Q_{1}\) and \(Q_{2}\) separated by two mediums in series having permittivities epsilon 1 and epsilon 2. The effective permittivity, from my knowledge, would be 2 times epsilon1 * epsilon2 divided by (epsilon1 + epsilon2). Just put this in the Force equation for 2 electric charges with epsilon substituted as the effective epsilon, you'll get the answer.

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestI think you can solve this question by calculating the equivalent permittivity between the two charges. Consider the charges and separated by two mediums in series having permittivities epsilon 1 and epsilon 2. The effective permittivity, from my knowledge, would be 2 times epsilon1 * epsilon2 divided by (epsilon1 + epsilon2). Just put this in the Force equation for 2 electric charges with epsilon substituted as the effective epsilon, you'll get the answer.

Log in to reply

I think you can solve this question by calculating the equivalent permittivity between the two charges. Consider the charges \(Q_{1}\) and \(Q_{2}\) separated by two mediums in series having permittivities epsilon 1 and epsilon 2. The effective permittivity, from my knowledge, would be 2 times epsilon1 * epsilon2 divided by (epsilon1 + epsilon2). Just put this in the Force equation for 2 electric charges with epsilon substituted as the effective epsilon, you'll get the answer.

Log in to reply

How?

Log in to reply

F=K(Qq\r^2)

Log in to reply

two charges in two different medium, say Q is in air and q is in water ?

Log in to reply

those two are same charged?positive or negative?

Log in to reply

it doesn't matter... say both are positive

Log in to reply

force of attraction can be calculated as F=Qq4*3.142E divided by r^2

Log in to reply