IMO 2014/3

Convex quadrilateral \(ABCD\) has \( \angle ABC = \angle CDA = 90^\circ \). Point \(H\) is the foot of the perpendicular from \(A\) to \(BD\). Points \(S\) and \(T\) lie on sides \(AB\) and \(AD\) respectively, such that \(H\) lies inside triangle \(SCT\) and

\[ \angle CHS - \angle CSB = 90 ^ \circ, \angle THC - \angle DTC = 90^ \circ . \]

Prove that line \(BD\) is tangent to the circumcirlce of triangle \(TSH\).

Note by Calvin Lin
3 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I don't have a purely synthetic solution for this as of yet. Here's my outline, I'll fill this later.

The conditions imply that the tangents to \((CHS)\) and \((CHT)\) at \(S\) and \(T\) are perpendicular to \(AB\) and \(AD\) respectively. Let \(X\) and \(Y\) be their centers respectively. By some tedious trig bash we obtain \(\dfrac{AX}{XH} = \dfrac{AY}{YH},\) implying the angle bisectors of \(\angle AXH\) and angle \(\angle AYH\) meet at a point on \(AH,\) or that the perpendicular bisectors of \(SH\) and \(TH\) meet on a point lying on \(AH.\) Hence, the circumcircle of \(\triangle TSH\) lies on \(AH,\) proving the desired result.

Also, @Xuming Liang wrote a really nice synthetic solution for this problem in the AoPS thread. :)

Sreejato Bhattacharya - 3 years, 11 months ago

Log in to reply

I found it rather easy. :p

Anju Pandey - 3 years, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...