Waste less time on Facebook — follow Brilliant.
×

IMO 2014/4

Points \(P\) and \(Q\) lie on side \(BC\) of acute-angled triangle \(ABC\) so that \( \angle PAB = \angle BCA \) and \( \angle CAQ = \angle ABC\). Points \(M\) and \(N\) lie on lines \(AP\) and \(AQ\) respectively, such that \(P\) is the midpoint of \(AM\), and \(Q\) is the midpoint of \(AN\). Prove that lines \(BM\) and \(CN\) intersect on the circumcircle of triangle \(ABC\).

Note by Calvin Lin
3 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I'll give a solution using complex numbers, hopefully no mistakes were made. The triangles QCA and ACB are similar, so (C-Q)/(A-Q)=[(C-A)/(B-A)]£, where £ refers to complex conjugation. Also, triangles ABC, PBA are similar, so (A-P)/(B-P)=[(C-A)/(B-A)]£ . But it is obvious that M-P=P-A and N-Q=Q-A, using these relations we get that (C-Q)/(N-Q)=(M-P)/(B-P), which means that the triangles CQN and MPB are similar. Now we observe that angle(ABM) +angle(ACN)=180 degrees, which means that ABCD is cyclic, so obviously D is on the circumcircle of the triangle ABC.

Adrian Stefan - 3 years, 6 months ago

Log in to reply

Alternatively, you could note that \(\triangle BPM \sim \triangle CQN\) and then perform a not too tedious trig bash.

Sreejato Bhattacharya - 3 years, 6 months ago

Log in to reply

My friend said that he solved it with Barycentric coordinates in 5 minutes :O

Zi Song Yeoh - 3 years, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...