Implicit Differentiation is an approach to taking derivatives that uses the chain rule to avoid solving explicitly for one of the variables.

For example, if \( y + 3x + 8 = 0 \), we could solve for \( y \) and then differentiate:

\[ \begin{align} y &= -3x - 8 \\ \frac{dy}{dx} &= -3 \end{align} \]

However, we could also simply take the derivative of each term with respect to \( x \) in place:

\[ \begin{align} y + 3x + 8 &= 0 \\ \frac{dy}{dx} + 3 + 0 &=0 \\ \frac{dy}{dx} &= -3 \end{align} \]

The second approach is known as *implicit differentiation*.

## Given \( x^2 + x + y^2 = 15 \) what is \( \frac{dy}{dx} \) at the point \( ( 2, 3) \)?

Since \( x^2 + x + y^2 = 15 \), differentiating, we have:

\[ \begin{align} 2x+1+2y\left(\frac{dy}{dx}\right)&=0 \\ \frac{dy}{dx}&=\frac{2x+1}{2y} \end{align} \]

Thus \( \frac{dy}{dx} \) at the point \( ( 2, 3) \) is \( \frac{2(2)+1}{2(3)}=\frac{5}{6} \). \( _\square \)

## If \( y^6 - e^{xy} = x \) what is \( \frac{dy}{dx} \)?

Taking the derivative of every term with respect to \( x \) gives us:

\[ \begin{align} 6y^5\left( \frac{dy}{dx} \right) - e^{xy} \left(\frac{d}{dx} (xy)\right)&=1 \\ 6y^5\left( \frac{dy}{dx} \right) - e^{xy} \left( y + x\frac{dy}{dx} \right)&=1 \end{align} \]

Now, we can isolate all of the \( \frac{dy}{dx} \) on the left:

\[ \begin{align} 6y^5\left( \frac{dy}{dx} \right) - xe^{xy}\left(\frac{dy}{dx}\right) &=1 + ye^{xy} \\ \left( \frac{dy}{dx} \right) \left(6y^5 - xe^{xy} \right)&=1 + ye^{xy} \\ \frac{dy}{dx} &= \frac{ 1 + ye^{xy} }{ 6y^5 - xe^{xy} } _\square \end{align} \]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestnice

Log in to reply