Waste less time on Facebook — follow Brilliant.
×

Indian Regional Mathematical olympiad problem

Let \(\alpha\) and \(\beta\) be two roots of the quadratic equation \(x^{2}+mx-1 = 0\),where \(m\) is an odd integer.Let \(\lambda_n = \alpha^{n}+\beta^{n}\) for \(n\ge 0\).Prove that for \(n \ge 0\),

(a) \(\lambda_n\) is an integer.

(b)\(gcd( \lambda_n ,\lambda_{n+1}) = 1\)

Note by Eddie The Head
3 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

We get the relation \(\lambda_{n+1}=-m.\lambda_n+\lambda_{n-1}\).

Since \(\lambda_0=2,\lambda_1=-m\), it follows that \((\lambda_0,\lambda_1)=1\), because m is an odd integer.Also, since the first two terms are integers and we got a recurrence relation with integer coefficients, it follows that \(\lambda_n\) must be an integer.

Firstly,\((\lambda_0,\lambda_1)=1\).Let \((\lambda_n,\lambda_{n-1})=1\).Then let's assume \((\lambda_{n+1},\lambda_n)=d,d>1\).Then, using the relation we would get that \(d|\lambda_{n-1}\), which is clearly a contradiction, so we have proved it by induction.

Bogdan Simeonov - 3 years, 7 months ago

Log in to reply

Nice ..I also solved in the same way....

Eddie The Head - 3 years, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...