Waste less time on Facebook — follow Brilliant.
×

Inequalities (Thailand Math POSN 1st elimination round 2014)

Only use any the following.

  • Basic inequalities
  • AM-GM-HM
  • Holder
  • Cauchy Schwarz (Titu's lemma is acceptable)
  • Weighted AM-GM

1.) Let \(a,b,c\) be positive real numbers such that \(abc = 1\). Prove that

\[\frac{4}{(a+2)^{2}+4b^{2}} + \frac{4}{(b+2)^{2}+4c^{2}} + \frac{4}{(c+2)^{2}+4a^{2}} \leq 1\]

2.) Find all positive real solutions \(a,b,c\) such that

\[ \begin{cases} 10a^{3}+b^{3} = 7ab + 20bc - 11 \\ b^{3}+20c^{3} = 7bc + 30ca - 20 \\ 34c^{3}+44a^{3} = 51ca + 20ab - 50 \\ \end{cases}\]

3.) Let \(a,b,c\) be positive real numbers such that \(abc = 1\). Prove that

\[a^{3}b+b^{3}c+c^{3}a \geq a^{2/5}b^{3/5} + b^{2/5}c^{3/5} + c^{2/5}a^{3/5}\]

4.) Let \(a,b,c\) be positive real numbers such that \(a+b+c+abc = 4\). Prove that

\[\left(\frac{a}{\sqrt{b+c}}+\frac{b}{\sqrt{c+a}}+\frac{c}{\sqrt{a+b}}\right)^{2}(ab+bc+ca) \geq \frac{1}{2}(4-abc)^{3}\]

5.) Let \(a,b,c\) be positive real numbers. Prove that

\[\frac{a^{9}}{bc}+\frac{b^{9}}{ca}+\frac{c^{9}}{ab} + \frac{3}{abc} \geq a^{4}+b^{4}+c^{4}+3\]

Check out all my notes and stuffs for more problems!

Thailand Math POSN 2013

Thailand Math POSN 2014

Note by Samuraiwarm Tsunayoshi
3 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I like the kind of questions where a suitably application of AM-GM gives the resultant inequality, since that relies on your ability to spot / identify patterns.

For example, here is how to do 3:

Apply AM-GM to \( 2 a^3 b + 2 b^3 c + c^3 a \).

Calvin Lin Staff - 3 years, 2 months ago

Log in to reply

Multiply \(abc\) on the RHS. Then Muirhead.

Muirheaders gonna Muirhead Muirhead Muirhead

Daniel Liu - 3 years, 2 months ago

Log in to reply

Right. Muirhead is just a fancy term for bunching AM-GM.

Calvin Lin Staff - 3 years, 2 months ago

Log in to reply

@Calvin Lin In addition, graders hate it because it involves no ingenuity at all.

Daniel Liu - 3 years, 2 months ago

Log in to reply

Sorry I miss typed no.4 here. It is \(a+b+c+abc = 4\) instead of \(1\).

Samuraiwarm Tsunayoshi - 3 years, 2 months ago

Log in to reply

Is it necessary to use just the ineqs u stated?

Dinesh Chavan - 3 years, 2 months ago

Log in to reply

Yup.

Samuraiwarm Tsunayoshi - 3 years, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...