# inequalities

Note by Deep Chanda
5 years, 4 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

It is minimum when a1=a2=a3=a4=a5=a6=a7=6/7 Which gives (6/7)^7 / { 1-6/7}^7 = (6/7)^7 / (1/7)^7 =6^7 So, ab=6*7=42

- 5 years, 4 months ago

GM-HM inequality states that for positive reals $$a_i$$ then $$\sqrt[n]{a_1a_2 \ldots a_n}\geq \frac{n}{\frac {1}{a_1}+\frac{1}{a_2} \ldots \frac{1}{a_n}}$$ where equality occurs when all $$a_i$$ are equal. So the value is always greater or equal than $$\frac{7}{\frac {1-a_1}{a_1}+\frac{1-a_2}{a_2} \ldots \frac{1-a_n}{a_n}}$$ to the power of seven and its minimum is when this equality occurs. Here I assume them as positive reals less than 1, because if not, then let some $$a_k>1$$, then the value is negative and grows smaller to negative infinity as the choice of $$a_k$$ grow bigger.

- 5 years, 4 months ago

nicely done Yong See F.

- 5 years, 4 months ago

I assumed 0 < ai < 1 because if any one ai=0 and any one ai>=1 then we can get - infinity

- 5 years, 4 months ago

×