# Inscribed Regular Polygons in Unit Circle

A while ago I posted this problem.

I wonder if there is a generalisation for such areas, with conditions such as

a) n, (n+k)-sided regular polygons

b) u, v-sided regular polygons

c) >2 regular polygons

The only trivial fact that I realize now is:

for two u, v-sided polygons and WLOG $$v>u$$

the v-sided polygon will cover $$\gcd\left(u, v\right)$$ vertices of the u-sided polygon.

If v is a multiple of u then the u-sided polygon need not be considered.

But this is a very, very specific case :(

Any ideas?

Note by Lolly Lau
2 years ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$