# Inspired by Abhishek Sharma

Find all functions $f(x) : \mathbb{R} \rightarrow \mathbb{R}$ which satisfy

$f(x+y) = f(x) + f(y)+2xy.$

Hint: If $r$ is a rational number, what can we say about $f(rk)$ for any $k$?

Prove that these are the only possible ones.

Note:
1. It is not sufficient to just find a family of solutions.
2. You may not assume that $f(x)$ is continuous or differentiable.
3. There is more than 1 function that satisfies those conditions.

Inspiration

Note by Calvin Lin
6 years ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

By definition, $f(r(k+1))=f(kr)+f(r)+2r^{2}k\quad---(1)$

Through pattern recognition of ${f(kr)}_{k=2}^{k=5}$ in terms of $f(r)$, it seems to follow the relation:

$f(kr)=kf(r)+k(k-1)r^{2} \quad --- (2)$ of which is directly derived from $(1)$

If this is the only solution, $f(n)$ has to have only $1$ value, where $n$ is any real number, which is dependent on the definition of the question. For instance, in the inspiration question, $f(1)$ is defined to be $4$ and only $4$.

Is this complete?

- 6 years ago

What is the value of $f ( \pi )$, if $f(1) = 4$?

Staff - 6 years ago

For that, Chew-Seong Cheong has already given the answer, which is $\pi^{2} + 3\pi$, assuming the function is continuous.

For a general case, if given $f(r)$, $f(x)$ can be found if it is continuous.

Using Chew-Seong Cheong's method,

$f(x+r)=f(x)+f(r)+2rx\\ f(x+r)-f(x)=f(r)+2rx$

So, $f(x+r)=\sum _{ k=1 }^{ \frac { x }{ r } }{ (f(r)+2k{ r }^{ 2 }) } +f(r)$

Therefore, $f(x+r)=\frac { xf(r) }{ r } +x\left( x+r \right) +f(r)\\ ={ x }^{ 2 }+\left( r+\frac { f(r) }{ r } \right) x+f(r)\\ ={ (x+r) }^{ 2 }+\left( \frac { f(r) }{ r } -r \right) \left( x+r \right)$

$\boxed{f(x)={ x }^{ 2 }+\left( \frac { f(r) }{ r } -r \right) x}$

- 6 years ago

It is true that "If the function is continuous, then $f(x) = x^2 + 3x$.

However, since your argument never uses the condition that the function is continuous, hence it is flawed. The error is that you made the assumption that $\frac{x}{r}$ is an integer, otherwise your summation is meaningless. It could be adjusted to the case where $\frac{x}{r}$ is a rational number, but cannot apply to the case of irrational numbers. In particular, we don't know what $f(\pi )$ is.

So, how do we use the condition of continuity (but not differentiability) to prove it?

Staff - 6 years ago

I don't know... Any clues? :D

- 6 years ago

Hint: What is $f(3), f(3.1), f(3.14), f(3.141), f(3.1415), f(3.14159), ...$?

Staff - 6 years ago

So we just have to approximate as we get closer and closer to $\pi$? Probably finding the upper and lower boundaries?

- 6 years ago

Yes, and no.

If a function is continuous, then $f( \pi ) = \lim f(x_i)$ for any series of points that converge to $\pi$. We can pick \( x_i = 10^{-i} \lfloor 10^i \pi \rfloor as I did above.

The idea of upper and lower boundaries would apply for "increasing functions", which doesn't require the assumption of continuity. In this case, we have $f(3) \leq f(3.1) \leq f(3.14) \ldots \leq f( \pi ) \leq \ldots f(3.15) \leq f(3.2) \leq f(4) .$

Because the inner inequalities converge to each other, we get the result (without assuming continuity).

The take home is that for such functional equations, you have to be careful to work with exactly what you are given, instead of adding additional assumptions because it makes your working simpler.

@Abhishek Sharma See the above and it's relevance to "assume function extends to real numbers and is differentiable".

Staff - 6 years ago

For any additive function $h(x)$ the function $f(x)=h(x)+x^2$ satisfies the equation. So there can be infinitely many wild solutions without additional constraints.

- 6 years ago

Right, in particular, let $\{ 1, \pi, v_3, v_4, \ldots \}$ be a rational basis for the reals, then for $x = r_1 + r_2 \pi + \sum r_i v_i$, we could define

$f(x)= r_1 + 2r_2 + x ^2$

Such a function is neither differentiable, nor continuous.

Staff - 6 years ago