Integral doubt

hello, i am stuck in these integrals can anyone please help

Note by Rishabh Bhatnagar
1 year, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

2) Use the property \[\int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx\] \[I=\int_{1}^{2011}\frac{\sqrt{x}}{\sqrt{2012-x}+\sqrt{x}}dx=\int_{1}^{2011}\frac{\sqrt{2012-x}}{\sqrt{x}+\sqrt{2012-x}}dx\] Therefore,\[2I=\int_{1}^{2011}\frac{\sqrt{x}}{\sqrt{2012-x}+\sqrt{x}}dx+\int_{1}^{2011}\frac{\sqrt{2012-x}}{\sqrt{2012-x}+\sqrt{x}}dx=\int_{1}^{2011}dx\] Therefore, \[I=1005\]

Aaron Jerry Ninan - 1 year, 7 months ago

Log in to reply

1) By algebric manupilations the given integral can be converted into -\[\int \frac{(1-\frac{1}{x^{2}})}{(x+\frac{1}{x}+2)\sqrt{x+\frac{1}{x}+1}}dx\] Now by u-substitution method-\[u^{2}=x+\frac{1}{x}+1\] And \[(1-\frac{1}{x^{2}})dx=2u\cdot du\] Now the problem can be solved using standard integrals.

Aaron Jerry Ninan - 1 year, 7 months ago

Log in to reply

thanx a lot

Rishabh Bhatnagar - 1 year, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...