Waste less time on Facebook — follow Brilliant.
×

Integral help?

I was doing a problem in which i used a bit unconventional approach, but in my process, i came across the following integral. but i am not really good in integration, as i am new to the subject, so i want to ask, if the integral is derivable? and if so, how to do this:

\[\large{\int\dfrac{sin(\frac{nx}{2}).cos\frac{(n+1)x}{2}}{sin(\frac{x}{2})}.dx}\]

Note by Aritra Jana
2 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Can you post the original problem??

Sudeep Salgia - 2 years, 10 months ago

Log in to reply

the original problem asked for the sum of the series :

\(\large{\sum\limits_{r=1}^{n}\frac{1}{r}sin(r\frac{\pi}{3})}\)

I was thinking if i could use the identity :

\(\large{\sum\limits_{r=1}^{n}cos(rx)=\dfrac{sin(\frac{nx}{2}).cos\frac{(n+1)x}{2}}{sin(\frac{x}{2})}}\)

and then integrate this to get the above sum, but as you can see, this was not fruitful.

i shall post this original problem in a new thread. :D

Aritra Jana - 2 years, 10 months ago

Log in to reply

\(\dfrac{\pi}{3} = x\)

\(S = \displaystyle \sum_{r=1}^{n}\dfrac{sin(rx)}{r}\)

\(C = \displaystyle \sum_{r=1}^{n}\dfrac{cos(rx)}{r}\)

\( C + iS = \displaystyle \sum_{r=1}^{n} \dfrac{e^{irx}}{r}\)

\( Now~ \displaystyle \sum_{r=1}^{n} x^{r - 1} = \dfrac{1 - x^n}{1 - x}\)

\( \displaystyle \sum_{r=1}^{n} \dfrac{x^r}{r} = \int \dfrac{1 - x^n}{1 - x}\)

Then keeping \( e^{ix} = x\) and comparing the imaginary part we can get the answer but I am unable to find this - \( \int \dfrac{x^n}{1 - x}\)

U Z - 2 years, 10 months ago

Log in to reply

@U Z Any ideas @Jake Lai

U Z - 2 years, 10 months ago

Log in to reply

Log in to reply

There was a problem related to this sum.

Krishna Sharma - 2 years, 10 months ago

Log in to reply

@Krishna Sharma really? i wasn't aware of that this actually came in our FIITJEE open test Mains

Aritra Jana - 2 years, 10 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...