\[ \large \int \dfrac{1}{x^2-i^2} \, dx \] where\[ i=\sqrt{-1} \]
Using partial fractions and then integrating
\[ \large \int \dfrac{1}{x^2-i^2} \, dx = 1/2i* \ln \frac { x-i }{ x+i } + C \]
Prove that their difference is a constant.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestTake

x - i =re^(iy)

So taking conjugates both sides,

x + i = re^(-iy)

So,

ln (x-i) - ln (x+i)= ln (re^(iy)) - ln (re^(-iy))= 2iy

Here y= arctan (-1/x) = arctan (x) - pi/2 .

So the integrals differ by a constant. Hope this helps sorry for typing errors.

Log in to reply

You need to know that log of imaginary number is defined

Log in to reply

Yes I came to know it after I posted this note and even proved the same.

Log in to reply

Do you mean \[\frac { x-i }{ x+i } \] or \[x-\frac { i }{ x+i } \] ? and \[\frac{1}{2}i\] or \[\frac{1}{2i}\]?

Log in to reply

Sir I have corrected it. It was the first one \[\frac { x-i }{ x+i } \]

Log in to reply