New user? Sign up

Existing user? Log in

\[ \large \int \dfrac1{1+x^4} \, dx = \, ? \]

Note by Kalpa Roy 2 years, 3 months ago

Easy Math Editor

*italics*

_italics_

**bold**

__bold__

- bulleted- list

1. numbered2. list

paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)

> This is a quote

This is a quote

# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"

2 \times 3

2^{34}

a_{i-1}

\frac{2}{3}

\sqrt{2}

\sum_{i=1}^3

\sin \theta

\boxed{123}

Sort by:

A solution without complex numbers, \( I = \displaystyle \int \dfrac{1}{1+x^{4}}dx = \dfrac{1}{2} \int \dfrac{1+x^{2}}{1+x^{4}}dx - \dfrac{x^{2}-1}{1+x^{4}}dx \)

\( \therefore I = \dfrac{1}{2} \displaystyle \int \dfrac{1+\frac{1}{x^{2}}}{\left(x-\frac{1}{x}\right)^{2}+2}dx - \dfrac{1-\frac{1}{x^{2}}}{\left(x+\frac{1}{x}\right)^{2}-2}dx \)

In the first integral, substitute \( x - \dfrac{1}{x} = u \) and in the second integral substitute \( x + \dfrac{1}{x} = v \)

\( \therefore I = \dfrac{1}{2} \displaystyle \int \dfrac{du}{u^{2}+2} - \int \dfrac{dv}{v^{2}-2} \) I think you can continue after this.

Log in to reply

thanks

can anyone please help me out with this integration

Se puede factorar cimplentando trinomio cuadrado perfecto (x^2+1-raiz(2)x)(x^2+1+raiz(2)x)

Hint: \(1+x^4 = (x^2 + i)(x^2- i ) \) for \(i = \sqrt{-1} \), apply partial fractions.

thanx

First application of integration of f(x)/g(x). Then application of integration of f (x)+g(x) In denominator

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestA solution without complex numbers,

\( I = \displaystyle \int \dfrac{1}{1+x^{4}}dx = \dfrac{1}{2} \int \dfrac{1+x^{2}}{1+x^{4}}dx - \dfrac{x^{2}-1}{1+x^{4}}dx \)

\( \therefore I = \dfrac{1}{2} \displaystyle \int \dfrac{1+\frac{1}{x^{2}}}{\left(x-\frac{1}{x}\right)^{2}+2}dx - \dfrac{1-\frac{1}{x^{2}}}{\left(x+\frac{1}{x}\right)^{2}-2}dx \)

In the first integral, substitute \( x - \dfrac{1}{x} = u \) and in the second integral substitute \( x + \dfrac{1}{x} = v \)

\( \therefore I = \dfrac{1}{2} \displaystyle \int \dfrac{du}{u^{2}+2} - \int \dfrac{dv}{v^{2}-2} \)

I think you can continue after this.

Log in to reply

thanks

Log in to reply

can anyone please help me out with this integration

Log in to reply

Se puede factorar cimplentando trinomio cuadrado perfecto (x^2+1-raiz(2)x)(x^2+1+raiz(2)x)

Log in to reply

Hint: \(1+x^4 = (x^2 + i)(x^2- i ) \) for \(i = \sqrt{-1} \), apply partial fractions.Log in to reply

thanx

Log in to reply

First application of integration of f(x)/g(x). Then application of integration of f (x)+g(x) In denominator

Log in to reply