Waste less time on Facebook — follow Brilliant.
×

Integration

\[ \large \int \dfrac1{1+x^4} \, dx = \, ? \]

Note by Kalpa Roy
8 months ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

A solution without complex numbers,
\( I = \displaystyle \int \dfrac{1}{1+x^{4}}dx = \dfrac{1}{2} \int \dfrac{1+x^{2}}{1+x^{4}}dx - \dfrac{x^{2}-1}{1+x^{4}}dx \)

\( \therefore I = \dfrac{1}{2} \displaystyle \int \dfrac{1+\frac{1}{x^{2}}}{\left(x-\frac{1}{x}\right)^{2}+2}dx - \dfrac{1-\frac{1}{x^{2}}}{\left(x+\frac{1}{x}\right)^{2}-2}dx \)

In the first integral, substitute \( x - \dfrac{1}{x} = u \) and in the second integral substitute \( x + \dfrac{1}{x} = v \)

\( \therefore I = \dfrac{1}{2} \displaystyle \int \dfrac{du}{u^{2}+2} - \int \dfrac{dv}{v^{2}-2} \)
I think you can continue after this. Vighnesh Shenoy · 7 months, 3 weeks ago

Log in to reply

@Vighnesh Shenoy thanks Kalpa Roy · 7 months, 3 weeks ago

Log in to reply

can anyone please help me out with this integration Kalpa Roy · 8 months ago

Log in to reply

Se puede factorar cimplentando trinomio cuadrado perfecto (x^2+1-raiz(2)x)(x^2+1+raiz(2)x) Carlos Suarez · 7 months, 4 weeks ago

Log in to reply

Hint: \(1+x^4 = (x^2 + i)(x^2- i ) \) for \(i = \sqrt{-1} \), apply partial fractions. Pi Han Goh · 8 months ago

Log in to reply

@Pi Han Goh thanx Kalpa Roy · 8 months ago

Log in to reply

First application of integration of f(x)/g(x). Then application of integration of f (x)+g(x) In denominator Arpan Manchanda · 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...