×

# Integration

$\int \cos(\ln x) \, dx = \, ?$

Note by Abdelfatah Teamah
11 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Following @Pi Han Goh 's hint:

Let $$u = \ln x \implies du = \dfrac 1x dx$$, so our integral becomes

$\displaystyle \int \cos( \ln x ) \,dx = \int e^u \cos(u) \,du$

Integrating by parts twice gives

\begin{align} \int e^u \cos(u) \,du &= \cos u \int e^u \,du - {\large \int} \left( \dfrac{d}{du} \cos(u) \right) \left( \int e^u \,du \right) \,du \\ &= e^u \cos u + \int e^u \sin u \,du \\ &= e^u \cos u + \sin u \int e^u \,du - {\large \int} \left( \dfrac{d}{du} \sin(u) \right) \left( \int e^u \,du \right) \,du \\ &= e^u \cos u + e^u \sin u - \int e^u \cos u \,du \end{align}

$$\therefore \displaystyle 2 \int e^u \cos u \,du = e^u \left( \cos u + \sin u \right) \\ \implies \displaystyle \int e^u \cos u \,du = \dfrac{e^u \left( \cos u + \sin u \right)}{2} + C$$

Thus in our original integration, replacing $$u$$ by $$\ln x$$, we get

$\displaystyle \int \cos ( \ln x ) \,dx = \dfrac{x}{2} \left( \cos (\ln x) + \sin (\ln x) \right) + C$

- 10 months, 4 weeks ago

Great work! You can simplify your work if you apply one off the integration tricks, namely:

$\int e^x (f(x) + f'(x)) \, dx = e^x f(x) + C .$

- 10 months, 4 weeks ago

What have you tried? Where are you stuck on?

Hint: Let $$y = \ln x$$, then integration by parts.

- 11 months ago