Waste less time on Facebook — follow Brilliant.
×

Integration Practice!

Image Credit: Patrick JMT

I am just sharing it because I think they are good. I hope they are quite readable.

Note by Kartik Sharma
2 years, 1 month ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

  1. \(\displaystyle\int \dfrac{\sin x + \sec x}{\tan x}\text{ d}x\)

  2. \(\displaystyle\int \dfrac{x}{\sqrt{3+x^4}}\text{ d}x\)

  3. \(\displaystyle\int \dfrac{x}{x^4+x^2+1}\text{ d}x\)

  4. \(\displaystyle\int \sin^3\theta\cos^5\theta\text{ d}\theta\)

  5. \(\displaystyle\int \dfrac{\sqrt{1+\ln x}}{x\ln x}\text{ d}x\)

  6. \(\displaystyle\int \dfrac{e^{2t}}{1+e^{4t}}\text{ d}t\)

  7. \(\displaystyle\int e^{\sqrt[3]{x}}\text{ d}x\)

  8. \(\displaystyle\int (1+\sqrt{x})^6\text{ d}x\)

  9. \(\displaystyle\int \ln (x^2-1)\text{ d}x\)

  10. \(\displaystyle\int_{-2}^{2} |x^2-4x| \text{ d}x\)

  11. \(\displaystyle\int \sqrt{1+e^x}\text{ d}x\)

  12. \(\displaystyle\int \dfrac{x+a}{x^2+a^2}\text{ d}x\)

  13. \(\displaystyle\int (x+\sin x)^2\text{ d}x\)

  14. \(\displaystyle\int \dfrac{1}{e^{3x}-e^x}\text{ d}x\)

  15. \(\displaystyle\int \sqrt{x}e^{\sqrt{x}}\text{ d}x\)

  16. \(\displaystyle\int \dfrac{x^3}{(x+1)^{10}}\text{ d}x\)

  17. \(\displaystyle\int \dfrac{\tan^{-1}\sqrt{x}}{\sqrt{x}}\text{ d}x\)

  18. \(\displaystyle\int \dfrac{\text{ d}x}{e^x-e^{-x}}\)

  19. \(\displaystyle\int \sin x \cdot \sin 2x\cdot \sin 3x\text{ d}x\)

  20. \(\displaystyle\int \dfrac{1}{\sqrt{x+1}+\sqrt{x}}\text{ d}x\)

Sorry for any errors. Daniel Liu · 2 years ago

Log in to reply

@Daniel Liu All CBSE NCERT Class 12 questions Megh Choksi · 2 years ago

Log in to reply

@Daniel Liu Yep. Thanks! Kartik Sharma · 2 years ago

Log in to reply

It is slightly hard to read it, because the image is rather small and zooming in loses the focus. Can you type out some of these? The integrals look interesting to work on! Calvin Lin Staff · 2 years, 1 month ago

Log in to reply

They are quite unreadable @Kartik Sharma Ronak Agarwal · 2 years, 1 month ago

Log in to reply

Can anyone do this https://brilliant.org/discussions/thread/extremely-weird-integration/?ref_id=946409 柯 南 · 1 year, 4 months ago

Log in to reply

They are easy Rajnikant 007 · 2 years ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...