Waste less time on Facebook — follow Brilliant.
×

Integration Practice!

Image Credit: Patrick JMT

I am just sharing it because I think they are good. I hope they are quite readable.

Note by Kartik Sharma
2 years, 10 months ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

  1. \(\displaystyle\int \dfrac{\sin x + \sec x}{\tan x}\text{ d}x\)

  2. \(\displaystyle\int \dfrac{x}{\sqrt{3+x^4}}\text{ d}x\)

  3. \(\displaystyle\int \dfrac{x}{x^4+x^2+1}\text{ d}x\)

  4. \(\displaystyle\int \sin^3\theta\cos^5\theta\text{ d}\theta\)

  5. \(\displaystyle\int \dfrac{\sqrt{1+\ln x}}{x\ln x}\text{ d}x\)

  6. \(\displaystyle\int \dfrac{e^{2t}}{1+e^{4t}}\text{ d}t\)

  7. \(\displaystyle\int e^{\sqrt[3]{x}}\text{ d}x\)

  8. \(\displaystyle\int (1+\sqrt{x})^6\text{ d}x\)

  9. \(\displaystyle\int \ln (x^2-1)\text{ d}x\)

  10. \(\displaystyle\int_{-2}^{2} |x^2-4x| \text{ d}x\)

  11. \(\displaystyle\int \sqrt{1+e^x}\text{ d}x\)

  12. \(\displaystyle\int \dfrac{x+a}{x^2+a^2}\text{ d}x\)

  13. \(\displaystyle\int (x+\sin x)^2\text{ d}x\)

  14. \(\displaystyle\int \dfrac{1}{e^{3x}-e^x}\text{ d}x\)

  15. \(\displaystyle\int \sqrt{x}e^{\sqrt{x}}\text{ d}x\)

  16. \(\displaystyle\int \dfrac{x^3}{(x+1)^{10}}\text{ d}x\)

  17. \(\displaystyle\int \dfrac{\tan^{-1}\sqrt{x}}{\sqrt{x}}\text{ d}x\)

  18. \(\displaystyle\int \dfrac{\text{ d}x}{e^x-e^{-x}}\)

  19. \(\displaystyle\int \sin x \cdot \sin 2x\cdot \sin 3x\text{ d}x\)

  20. \(\displaystyle\int \dfrac{1}{\sqrt{x+1}+\sqrt{x}}\text{ d}x\)

Sorry for any errors.

Daniel Liu - 2 years, 9 months ago

Log in to reply

All CBSE NCERT Class 12 questions

U Z - 2 years, 9 months ago

Log in to reply

Yep. Thanks!

Kartik Sharma - 2 years, 9 months ago

Log in to reply

It is slightly hard to read it, because the image is rather small and zooming in loses the focus. Can you type out some of these? The integrals look interesting to work on!

Calvin Lin Staff - 2 years, 9 months ago

Log in to reply

They are quite unreadable @Kartik Sharma

Ronak Agarwal - 2 years, 9 months ago

Log in to reply

Can anyone do this https://brilliant.org/discussions/thread/extremely-weird-integration/?ref_id=946409

柯 南 - 2 years, 1 month ago

Log in to reply

They are easy

Rajnikant 007 - 2 years, 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...