New user? Sign up

Existing user? Log in

Image Credit: Patrick JMT

I am just sharing it because I think they are good. I hope they are quite readable.

Note by Kartik Sharma 3 years, 6 months ago

Easy Math Editor

*italics*

_italics_

**bold**

__bold__

- bulleted- list

1. numbered2. list

paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)

> This is a quote

This is a quote

# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"

2 \times 3

2^{34}

a_{i-1}

\frac{2}{3}

\sqrt{2}

\sum_{i=1}^3

\sin \theta

\boxed{123}

Sort by:

\(\displaystyle\int \dfrac{x}{\sqrt{3+x^4}}\text{ d}x\)

\(\displaystyle\int \dfrac{x}{x^4+x^2+1}\text{ d}x\)

\(\displaystyle\int \sin^3\theta\cos^5\theta\text{ d}\theta\)

\(\displaystyle\int \dfrac{\sqrt{1+\ln x}}{x\ln x}\text{ d}x\)

\(\displaystyle\int \dfrac{e^{2t}}{1+e^{4t}}\text{ d}t\)

\(\displaystyle\int e^{\sqrt[3]{x}}\text{ d}x\)

\(\displaystyle\int (1+\sqrt{x})^6\text{ d}x\)

\(\displaystyle\int \ln (x^2-1)\text{ d}x\)

\(\displaystyle\int_{-2}^{2} |x^2-4x| \text{ d}x\)

\(\displaystyle\int \sqrt{1+e^x}\text{ d}x\)

\(\displaystyle\int \dfrac{x+a}{x^2+a^2}\text{ d}x\)

\(\displaystyle\int (x+\sin x)^2\text{ d}x\)

\(\displaystyle\int \dfrac{1}{e^{3x}-e^x}\text{ d}x\)

\(\displaystyle\int \sqrt{x}e^{\sqrt{x}}\text{ d}x\)

\(\displaystyle\int \dfrac{x^3}{(x+1)^{10}}\text{ d}x\)

\(\displaystyle\int \dfrac{\tan^{-1}\sqrt{x}}{\sqrt{x}}\text{ d}x\)

\(\displaystyle\int \dfrac{\text{ d}x}{e^x-e^{-x}}\)

\(\displaystyle\int \sin x \cdot \sin 2x\cdot \sin 3x\text{ d}x\)

\(\displaystyle\int \dfrac{1}{\sqrt{x+1}+\sqrt{x}}\text{ d}x\)

Sorry for any errors.

Log in to reply

All CBSE NCERT Class 12 questions

Yep. Thanks!

It is slightly hard to read it, because the image is rather small and zooming in loses the focus. Can you type out some of these? The integrals look interesting to work on!

They are quite unreadable @Kartik Sharma

Can anyone do this https://brilliant.org/discussions/thread/extremely-weird-integration/?ref_id=946409

They are easy

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewest\(\displaystyle\int \dfrac{x}{\sqrt{3+x^4}}\text{ d}x\)

\(\displaystyle\int \dfrac{x}{x^4+x^2+1}\text{ d}x\)

\(\displaystyle\int \sin^3\theta\cos^5\theta\text{ d}\theta\)

\(\displaystyle\int \dfrac{\sqrt{1+\ln x}}{x\ln x}\text{ d}x\)

\(\displaystyle\int \dfrac{e^{2t}}{1+e^{4t}}\text{ d}t\)

\(\displaystyle\int e^{\sqrt[3]{x}}\text{ d}x\)

\(\displaystyle\int (1+\sqrt{x})^6\text{ d}x\)

\(\displaystyle\int \ln (x^2-1)\text{ d}x\)

\(\displaystyle\int_{-2}^{2} |x^2-4x| \text{ d}x\)

\(\displaystyle\int \sqrt{1+e^x}\text{ d}x\)

\(\displaystyle\int \dfrac{x+a}{x^2+a^2}\text{ d}x\)

\(\displaystyle\int (x+\sin x)^2\text{ d}x\)

\(\displaystyle\int \dfrac{1}{e^{3x}-e^x}\text{ d}x\)

\(\displaystyle\int \sqrt{x}e^{\sqrt{x}}\text{ d}x\)

\(\displaystyle\int \dfrac{x^3}{(x+1)^{10}}\text{ d}x\)

\(\displaystyle\int \dfrac{\tan^{-1}\sqrt{x}}{\sqrt{x}}\text{ d}x\)

\(\displaystyle\int \dfrac{\text{ d}x}{e^x-e^{-x}}\)

\(\displaystyle\int \sin x \cdot \sin 2x\cdot \sin 3x\text{ d}x\)

\(\displaystyle\int \dfrac{1}{\sqrt{x+1}+\sqrt{x}}\text{ d}x\)

Sorry for any errors.

Log in to reply

All CBSE NCERT Class 12 questions

Log in to reply

Yep. Thanks!

Log in to reply

It is slightly hard to read it, because the image is rather small and zooming in loses the focus. Can you type out some of these? The integrals look interesting to work on!

Log in to reply

They are quite unreadable @Kartik Sharma

Log in to reply

Can anyone do this https://brilliant.org/discussions/thread/extremely-weird-integration/?ref_id=946409

Log in to reply

They are easy

Log in to reply