I wanted to share this sum with you all, though I have no clue how to prove it ---

\[\sum_{n=1}^{\infty}\left[(-1)^n \dfrac{(n!)^2}{n^2(2n)!}\right]=2\log(\phi)\log\left(\dfrac{1}{\phi}\right)\] where \(\phi\) is the golden ratio.

It has an amazing closed form, doesn't it?

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewesthttp://mathworld.wolfram.com/CentralBinomialCoefficient.HTML gives a bit of info

Log in to reply

Here's a proof for a lot of these( including this one ): click me

Log in to reply