Prove that the square root of a prime number is irrational.

**Solution**

Let \(p\) be any prime number. For \(\sqrt{p}\) to be rational, it must be expressible as the quotient of two coprime integers \((Condition 1)\).

\[\sqrt{p}=\frac{m}{n}\]

\[p=\frac{{m}^{2}}{{n}^{2}}\]

\[p{n}^{2}={m}^{2}\]

Since \(n,m,{n}^{2},{m}^{2}\) are integers, this implies that \(m\) has a factor of \(p\). Therefore, if the expression \(m=pm'\) is substituted into the third equation, then \({n}^{2}=p{(m' )}^{2}\). By a similar argument, the integer \(n\) must possess a factor of \(p\) as well. This demonstrates the fact both \(m\) and \(n\) are not coprime, which contradicts \(Condition 1\). Hence, the square root of a prime number is irrational.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

There are no comments in this discussion.