It is easy to show that both \(m\) and \(n\) are even.Let \(m=2r\) and \(n=2s\)

Hence, \(2^{2r}=a^{2}-3^{2s}=(a-3^{s})(a+3^{s})\)

Hence, \(a-3^{s}=2^{i}\)...\((1)\) and \(a+3^{s}=2^{2r-i}\)...\((2)\)

\((2)-(1)\) gives \(2.3^{s}=2^{i}(2^{2r-2i}-1)\), which implies \(i=1\).

Thus, \(a-3^{s}=2\) and \(a+3^{s}=2^{2r-1}\).Hence, \(3^{s}=2^{2r-2}-1\)...\((3)\)

Suppose, \(s>1\).Then \(r≥3\).But then the equation \((3)\) is impossible since when divided by \(8\), the left hand side \(3^{s}\) leaves a remainder \(1\) or \(3\) while the right hand side would leave the remainder \(7\).Thus \(s=1\) is the only possibility.When \(s=1\),i.e, \(n=2\),we have the solution \(2^{4}+3^{2}=25\).Thus \((m,n)=(4,2)\) is the only solution.

\(a^{2}≡0 or 1(mod 3)\) and \(2^{m}+3^{n}≡2^{m}(mod 3)\).But \(2^{m}\) is not congruent \(0\) modulo \(3\).

So,\(2^{m}≡1(mod 3)\) which implies \(m\) is even.Hence, \(3^{n}≡a^{2}≡0 or 1 (mod 4)\).But \(4\) does not divides \(3^{n}\).So,\(3^{n}≡1(mod4)\) which implies \(n\) is even.

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestSuppose \(2^{m}+3^{n}=a^{2}\).

It is easy to show that both \(m\) and \(n\) are even.Let \(m=2r\) and \(n=2s\)

Hence, \(2^{2r}=a^{2}-3^{2s}=(a-3^{s})(a+3^{s})\)

Hence, \(a-3^{s}=2^{i}\)...\((1)\) and \(a+3^{s}=2^{2r-i}\)...\((2)\)

\((2)-(1)\) gives \(2.3^{s}=2^{i}(2^{2r-2i}-1)\), which implies \(i=1\).

Thus, \(a-3^{s}=2\) and \(a+3^{s}=2^{2r-1}\).Hence, \(3^{s}=2^{2r-2}-1\)...\((3)\)

Suppose, \(s>1\).Then \(r≥3\).But then the equation \((3)\) is impossible since when divided by \(8\), the left hand side \(3^{s}\) leaves a remainder \(1\) or \(3\) while the right hand side would leave the remainder \(7\).Thus \(s=1\) is the only possibility.When \(s=1\),i.e, \(n=2\),we have the solution \(2^{4}+3^{2}=25\).Thus \((m,n)=(4,2)\) is the only solution.

Log in to reply

How to show that both \(m\) and \(n\) are even?

Log in to reply

\(a^{2}≡0 or 1(mod 3)\) and \(2^{m}+3^{n}≡2^{m}(mod 3)\).But \(2^{m}\) is not congruent \(0\) modulo \(3\).

So,\(2^{m}≡1(mod 3)\) which implies \(m\) is even.Hence, \(3^{n}≡a^{2}≡0 or 1 (mod 4)\).But \(4\) does not divides \(3^{n}\).So,\(3^{n}≡1(mod4)\) which implies \(n\) is even.

Log in to reply

Thank you for this solution! Been thinking about this all day. Never got the chance to sit down with a pen and paper, unfortunately...

Log in to reply

Could you please explain your solution from line 5 onwards? How is it 2.3^s? Thanks.

Log in to reply

I just subtracted eqn \(1\) from eqn \(2\) and got \(2\times3^{s}=2^{2r-i}-2^{i}=2^{i}(2^{2r-2i}-1)\).

Hence, \(3^{s}=2^{i-1}(2^{2r-2i}-1)\).If \(i>1\),then \(2\) divides \(3^{s}\), which is impossible.So \(i=1\).

So,\(3^{s}=2^{1-1}(2^{2r-2.1}-1)=2^{2r-2}-1\), which is eqn \(3\).Then the solution is very clear.

Log in to reply

Log in to reply

How about \( (3,0) \) and \( (0,1) \) ?

Log in to reply

m, n are positive integers. 0 is not positive.

Log in to reply

(4,2),(3,0),(0,1),

Log in to reply