Is there a better way to solve this problem than using the Sophie-Germain Identity?

http://www.artofproblemsolving.com/Wiki/index.php/1987AIMEProblems/Problem_14

Evaluate (104+324)(224+324)(344+324)(464+324)(584+324)(44+324)(164+324)(284+324)(404+324)(524+324) \frac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)} .

I'd be surprised if it was because usually MAA doesn't require you to know relatively obscure theorems in their competitions until you get to at least USAMO. Is there a more intuitive way to solve this problem?

Cheers

Note by Michael Tong
6 years, 1 month ago

No vote yet
3 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Sort by:

Top Newest

See this.

Akshat Sharda - 4 years ago

Log in to reply

Notice that all of the fourth powers differ be 1212. Try using a substitution that takes advantage of this and see if you can somehow simplify the result.

Garrett Higginbotham - 6 years, 1 month ago

Log in to reply

What I meant was, the fourth powers in the numerator all differ by 1212 and all the fourth powers in the denominator differ by 1212.

Garrett Higginbotham - 6 years, 1 month ago

Log in to reply

Seems like once I got this problem in Brilliant too...

Bhargav Das - 6 years, 1 month ago

Log in to reply

Yes me too

Arbër Avdullahu - 6 years, 1 month ago

Log in to reply

Actually, sophie-germain identity isn't very obscure. Well.. not as well known as difference of squares of difference of cubes though...

Taehyung Kim - 6 years, 1 month ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...