Waste less time on Facebook — follow Brilliant.
×

It may take another 2016 years?

Consider a polynomial

\[\large f(x)=x^{2016}-x^{2015}+x^{2014}-x^{2013}\ldots-x^1+x^0\]

Then find

\[\large f(2016)-f(2015)+f(2014)-f(2013)\ldots-f(1)+f(0)\]

You can also post any other problems related to functions.

Note by Anish Harsha
11 months, 1 week ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

here is the answer


1126556662642228006093484844589654660409766825886615134672751623681885761448710851076455885278

5503888369263542541245215475887146185458867592408705714911005332979918736584543387873614817682

1698711903263188883111358931229506277792418450828914126089113516773333012657999191772915407411

4060129980355350094850500821470148398848750291235944291823279709679787811839066497518396203481

4376298342364082281049459219168573193879002025098726867566525090238993799794342184031144462682

4489304917371070647666388014281248554129282385716037891214945173139168343777446720303921101574

7280662076152257834895276525086610591461059121672082155290472254521478304768337318091987576640

4807850725193626152088741899198439050761614106448158257099726372461650793822887293523671088888

5236249238444262389993371389112501314156545670065569796176671436891990865072207769071861646191

6843735581298472354039464995455418752401072032347796621230412580243144063341153970333447318952

7556625594036286575651568038354144571441586076898592033647317773114336620730551910155985032836

2102629561133996472855535826532960776952745285500269469553843585395987921243153712631953130289

6979299440453153298538684645347207814771707245990238836052928150370247181361043987901129544516

6814547121599000285235718976629012464121813643049956168356225156220621620428907338855603983382

9420061766759582598825750191969718355115753635140825316347743370080178380483419767564275355152

2712041621123392361988010447064888154683480281857436721309432958854009254944044574646193810741

7237863266545909032083002285710166076631813890448018653493639310595828413506623801326252766738

6458199597507816764574343598867525893130874322821862644275673672165701416750296352387574382694

4907430885167246096713014483540685909506469798842853995626299108771656385663520269583150177679

8773863458805496837868522633772452828561983621495703274156936988754314519322938308729962724373

1534735621115143789355365173289512301347240436812254652277257442963412494437399157486010077004

3828531177215550940472595586951100961299043130523724050584210873088624833917494968200992032823

5375395804363615920712727105593032081338663541586296565607707895918382418648524489742343011193

4642814062684376701257830124244409340849065443131061940646320432500443459589489429238804793237

1197151792828017387125803187440611028308269785340765966328259967628339875134804382428708318261

7404703448266400994840830323101205869799929619900038232614586133131168477191610488720486128182

8287362540404436403744629210303219134657880721286577354583512065281214941262213313784130050842

7992832055586203153265079743872990294075760315267276306810750175395175802825028734579375114330

7922526409005990031469152387099460716013138803326674642665162563969219275865474077499127784842

1048404091931914557580438985183152644205913437749333629300153344983214846727471485895755829558

7381299354747303710724617097559369279217065518327651372114497297193596753931507221635756917551

1803147468008858056539191568955794491183411684200613989928770768440998750653376578641810440706

8624286185175086033899864046513182287558453803534775516237836979176509039186032518833909806745

9451745941662786162864196510883573171410919147805593094228202366579348246800359462312387474491

7331237473952393089048294519094410921904408589044335028604054422115975223127608977762247971829

4928568492775315774159688577303541267669846057579141672707622442258263887551980793353975037869

6818685543518245137091261938118122188124921431779467672600775427910641542410939444038224473018

7846928773989827453732551901822148538647484037770900921957076020782539228429304983907561795717

0380880299567730684438543129957219052379731517962725168618280699021957286517936936969299329517

0624632676365719048008241753485018438773258840984721010422356998311543456879113358098181588724

1417350991712902780263401578153216330089819388671526848659489064866983474732666244186204771145

5002832305376418367795278785679142852063403894033689698390733509995504681163029925205013179609

8016246101441854084132639160076139230292291009081069457018478883953437084017577118663257726329

4587433024736831479598117466536750366604651907963425389832960478072807489887028211684719651146

9678354757123706095733384282707486798977367881478218536347760891711152959963536060019190812393

4100745870127544254247446274028707349127714532838057178471597308981654732469541423189307952229

1344628214351420241084321945566079131860437226766499386152818764283706010875426980971321788970

9439191242019099365686292757612093193277596680149716792246252447971214464367675675660150940592

1523624968567728656264785885112243443863582439657812076534980965118900928095863478595233040301

4676087856492991546043956701093983362178850712796868222991308072608079049875709541613752764519

8862341458554082757022609128069716039571483214456850425335724513655060130189823917557299506002

2049258477003205984743027941564316443033648991208139789966489320021074796976921917863737926831

2075826412504313761320721613128600029744565205585549895382020936604943051766920712758454920126

1659038687977543742867479381275724752163505000947194048356709051924268456017732527648493642005

6709361427709677688939521680975713141789753959525595530745291628572178340430837321719904534385

7063545921675709597744389348236489887245227030580735252599979751160697508319021868650404898511

3524077079649325662361235575210942494306848060410361447469913533066402818626773429624330948926

2946458733904638936650286283320088340007855474190410456604047237103638319402292918816208462709

4296129982152422358275343785340612579918353405912603377277715208191743899279293939825163728341

7758247952119280495151637502609579015192302202088777034232712894524250659349110601600939608389

7529747155382868522469966962848673851570273070554232445563866125736562730463743880558942974433

2403932509319725077406621128289713103768159012521435644594702636733703868935111187041518082673

5603457799863394318090223135462224125252742836358144464695606979783220448504169641327700535120

8504115264461537493305802940116972698403405123128567669417864096639557726086272394275055052363

5373028872819547077765335732092053368108550014056465430878071900656255711165098531524239692252

8752525758865035029067854185026478902906886880799194940201108152547963493449718546716281890251

5681417211005815194806370220842687408483920785142884729553021685268710808863736701436734506947

0409820108558339591148469125262507041649030549855476456460270700909382347098401298172634034301

1879400926474371085923394507419635257084465085431725652917377960016866594326397368022330296512

6789419235594957539432675160750439529074465666475918061717005190807500686622686340702019623449

71062269207572345527695709062375446153961899288085659608510923549472856850231479824 Aareyan Manzoor · 11 months, 1 week ago

Log in to reply

@Aareyan Manzoor Uhh... congratulations? Actually, how on earth did you get that? Manuel Kahayon · 11 months, 1 week ago

Log in to reply

@Manuel Kahayon wolframalpha Aareyan Manzoor · 11 months, 1 week ago

Log in to reply

The answer is indeterminate because \(f(0) = 0^{2016} - 0^{2015} + \cdots + \color{red}{0^0} \).

See What is \(0^0\). Pi Han Goh · 11 months, 1 week ago

Log in to reply

@Pi Han Goh Then what will be the answer if we take out \(f(0)\), sir ? Anish Harsha · 11 months, 1 week ago

Log in to reply

@Anish Harsha The answer is very huge.

Hint: \( \dfrac{x^n + 1}{x+1} = x^{n-1} - x^{n-2} + x^{n-2} - \cdots + 1 \) for positive odd \(n\). Pi Han Goh · 11 months, 1 week ago

Log in to reply

2016 Aditya Rao · 11 months, 1 week ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...